保密级别:外部使用

UM800YA 用户手册

版本: V1.0.2

广芯微电子 (广州) 股份有限公司

http://www.unicmicro.com/

UM800YA 用户手册 条款协议

条款协议

本文档的所有部分,其著作产权归广芯微电子(广州)股份有限公司(以下简称广芯微电子) 所有,未经广芯微电子授权许可,任何个人及组织不得复制、转载、仿制本文档的全部或部分组件。 本文档没有任何形式的担保、立场表达或其他暗示,若有任何因本文档或其中提及的产品所有资讯 所引起的直接或间接损失,广芯微电子及所属员工恕不为其担保任何责任。除此以外,本文档所提 到的产品规格及资讯仅供参考,内容亦会随时更新,恕不另行通知。

- 本文档中所记载的关于电路、软件和其他相关信息仅用于说明半导体产品的操作和应用实例。
 用户如在设备设计中应用本文档中的电路、软件和相关信息,请自行负责。对于用户或第三方因使用上述电路、软件或信息而遭受的任何损失,广芯微电子不承担任何责任。
- 2. 在准备本文档所记载的信息的过程中,广芯微电子已尽量做到合理注意,但是,广芯微电子并不保证这些信息都是准确无误的。用户因本文档中所记载的信息的错误或遗漏而遭受的任何损失,广芯微电子不承担任何责任。
- 3. 对于因使用本文档中的广芯微电子产品或技术信息而造成的侵权行为或因此而侵犯第三方的 专利、版权或其他知识产权的行为,广芯微电子不承担任何责任。本文档所记载的内容不应视 为对广芯微电子或其他人所有的专利、版权或其他知识产权作出任何明示、默示或其它方式的 许可及授权。
- 4. 使用本文档中记载的广芯微电子产品时, 应在广芯微电子指定的范围内, 特别是在最大额定值、电源工作电压范围、热辐射特性、安装条件以及其他产品特性的范围内使用。对于在上述指定范围之外使用广芯微电子产品而产生的故障或损失、广芯微电子不承担任何责任。
- 5. 虽然广芯微电子一直致力于提高广芯微电子产品的质量和可靠性,但是,半导体产品有其自身的具体特性,如一定的故障发生率以及在某些使用条件下会发生故障等。此外,广芯微电子产品均未进行防辐射设计。所以请采取安全保护措施,以避免当广芯微电子产品在发生故障而造成火灾时导致人身事故、伤害或损害的事故。例如进行软硬件安全设计(包括但不限于冗余设计、防火控制以及故障预防等)、适当的老化处理或其他适当的措施等。

目录

1	系统	祝述		1
	1.1	主要特	5点	1
	1.2	功能框	国图	3
2	かり	婴		4
_				
	2.1		钟性	
	2.2		代态字寄存器(PSW)	
	2.3		子(ACC)	
	2.4		7器	
	2.5		针(DPTR)	
3	存储	绪器		5
	3.1	主要特	}性	5
	3.2		RAM (ISRAM)	
	3.3		·····································	
	3.4		F储空间映射	
	3.5		序储器 EFLASH	
4	系统	IS)置距វ	FR)	9
	4.1	寄存器	导描述	9
		4.1.1	P0	11
		4.1.2	SP	12
		4.1.3	DPTR	12
		4.1.4	PCON	13
		4.1.5	PDSEL	13
		4.1.6	POREN	14
		4.1.7	P1	14
		4.1.8	LDOTRIML	15
		4.1.9	DPS	16
		4.1.10	P0DR	16
		4.1.11	IEN2	17
		4.1.12	RCLTRIML	17
		4.1.13	RCLTRIM	17
		4.1.14	P2	18
		4.1.15	OUS	19
		4.1.16	P0AL	19

4.1.17	IEN0	20
4.1.18	IP	21
4.1.19	P0AH	22
4.1.20	P1AL	22
4.1.21	REMAP	23
4.1.22	P1AH	23
4.1.23	CLKST	24
4.1.24	ESTCR	25
4.1.25	XTHCTR	25
4.1.26	ADCDR0	26
4.1.27	ADCDR1	26
4.1.28	IEN1	27
4.1.29	LDOTRIMH	28
4.1.30	RCHTRIMH	28
4.1.31	RCHTRIML	28
4.1.32	P2AL	29
4.1.33	PSW	29
4.1.34	P0PD	30
4.1.35	P00D	31
4.1.36	POCS	32
4.1.37	SYSDIV	32
4.1.38	P1PD	33
4.1.39	P10D	34
4.1.40	P1CS	34
4.1.41	PCLK0	35
4.1.42	PCLK1	36
4.1.43	ACC	37
4.1.44	PxIRQ	37
4.1.45	P2PD	37
4.1.46	P1DR	38
4.1.47	PRESETO	39
4.1.48	PRESET1	40
4.1.49	P2AH	40
4.1.50	PxIEN	
	P2OD	
4.1.52	В	
	PxPUN	
	P2CS	

		4.1.55	CLKCON	44
		4.1.56	PxOEN	45
		4.1.57	P2DR	45
	4.2	系统日	寸钟	46
		4.2.1	主要特性	46
		4.2.2	时钟定义	46
		4.2.3	时钟结构图	47
	4.3	复位》	京	47
		4.3.1	主要特性	47
		4.3.2	看门狗复位	48
		4.3.3	LVD 与 LVR 复位	48
		4.3.4	外部复位	49
		4.3.5	寄存器	49
	4.4	低功耒	毛模式	49
		4.4.1	主要特性	49
		4.4.2	低功耗模式	49
		4.4.3	低功耗模式表	50
5	FFC	•		51
3			·····································	
	5.1			
	5.2		SH 读效率	
	5.3		也址	
	5.4		B描述	
		5.4.1		
			OINTUS 中断状态寄存器	
		5.4.3	EFC_OADRL/H EFLASH 烧录地址寄存器	
		5.4.4	EFC_ODATA EFLASH 烧录数据寄存器	
		5.4.5	EFC_OCTRL 电压输出寄存器	
		5.4.6	OINTEN 中断使能寄存器	
	5.5		⁶ 程	
		5.5.1	Read 操作	
		5.5.2	Write 操作	
		5.5.3	Erase 操作	
		5.5.4	ChipErase 操作	58
6	PW	M(脉宽)	调制模块)	59
	6.1	特性.		59
	6.2	功能抗	苗述	59
	6.3	PWM	输出时序	60

	6.4	寄存器	群 述	60
		6.4.1	PWMx_PL/H PWMx 数据寄存器	61
		6.4.2	PWMx_DL/H PWMx 占空比控制寄存器	61
		6.4.3	PWMx_CON PWMx 设置寄存器	62
	6.5	软件掉	操作流程	63
7	GPIO	(I/O 端	5口)	64
	7.1	主要特	<u> </u>	64
	7.2	端口模	读图	64
	7.3	端口中	"断	65
	7.4	寄存器	器描述	65
		7.4.1	P00_CFG	66
		7.4.2	P01_CFG	66
		7.4.3	P03_CFG	67
		7.4.4	P04_CFG	67
		7.4.5	P10_CFG	68
		7.4.6	P11_CFG	68
		7.4.7	P12_CFG	69
		7.4.8	P13_CFG	69
		7.4.9	P14_CFG	70
		7.4.10	P15_CFG	70
		7.4.11	P20_CFG	71
		7.4.12	P22_CFG	71
		7.4.13	P23_CFG	72
		7.4.14	P25_CFG	72
		7.4.15	P26_CFG	73
		7.4.16	P27_CFG	73
		7.4.17	P0_IE	74
		7.4.18	P1_IE	74
		7.4.19	P2_IE	75
		7.4.20	P0_SR	76
		7.4.21	P1_SR	77
		7.4.22	P2_SR	78
8	BEEF	PER(蜂	鸣器)	79
	8.1	寄存器	器描述	79
		8.1.1	BEEPCTR	79
9	UAR ⁻	T0/1(增	曾强型串口)	80

	9.1	持性.		80
	9.2 l	JART	⁻ 0 工作模式	80
	9.3 l	JART	⁻ 1 工作模式	83
	9.4	多机道	通讯	84
	9.5 l	JART	⁻ 0 寄存器描述	84
	9.5	5.1	UART0_S0CON 中断寄存器	85
	9.5	5.2	UARTO_SOREL 波特率配置寄存器	85
	9.5	5.3	UART0_S0BUF 数据寄存器	86
	9.5	5.4	UARTEN 使能控制寄存器	86
	9.6 l	JART	1 寄存器描述	
	9.6	5.1	UART1_S1CON 中断寄存器	
	9.6	5.2	UART1_S1REL 波特率配置寄存器	
	9.6	5.3	UART1_S1BUF 数据寄存器	
	9.6		UARTEN 使能控制寄存器	
			率	
10	UART	Γ2/3	(通用异步串口收发器)	90
	10.1	主	要特性	90
	10.2	寄存	字器描述	91
	10	.2.1	UART_ISR 中断状态寄存器	91
	10	.2.2	UART_IER 中断使能寄存器	92
	10	.2.3	UART_CR 控制寄存器	92
	10	.2.4	UART_TDR 发送数据寄存器	93
	10	.2.5	UART_RDR 接收数据寄存器	93
	10	.2.6	UART_BPR_L 波特率参数低位寄存器	94
	10	.2.7	UART_BPR_H 波特率参数高位寄存器	94
	10.3	软件	牛使用说明	95
	10	.3.1	UART 发送流程	95
	10	.3.2	UART 接收流程	95
11	SPI			96
	11.1	概》	<u>术</u>	96
	11.2	主	要特性	96
	11.3	寄存	字器描述	96
	11	.3.1	SPI_CR1 控制寄存器	97
	11.	.3.2	SPI_CR2 控制寄存器	98
	11.	.3.3	SPI_CR3 控制寄存器	99
	11	.3.4	SPI_CR4 控制寄存器	100
	11	.3.5	SPI_IE 中断使能寄存器	100

V1.0.2

	11.3.6	SPI_SR 状态寄存器	
	11.3.7	SPI_TXBUF 发送数据寄存器	101
	11.3.8	SPI_RXBUF 接收数据缓冲寄存器	102
	11.4 软件	‡操作流程	102
	11.4.1	Master 主机发送	102
	11.4.2	Master 主机接收	103
	11.4.3	Slave 从机发送	103
	11.4.4	Slave 从机接收	104
12		(低功耗定时器)	
	12.1 概划	<u> </u>	105
	12.2 主要	E特性	105
	12.3 结构	9框图	106
	12.4 工作	F模式	106
	12.4.1	普通定时器	106
	12.4.2	Trigger 脉冲触发计数	106
	12.4.3	外部异步脉冲计数	107
	12.4.4	Timeout 模式	107
	12.4.5	计数模式	107
	12.4.6	外部触发的超时唤醒	107
	12.4.7	16bit PWM	108
	12.5 寄存	7器描述	108
	12.5.1	LPTIMER_CFG0 寄存器	109
	12.5.2	LPTIMER_CFG1 寄存器	109
	12.5.3	LPTIMER_CNT 计数值寄存器	110
	12.5.4	LPTIMER_CMP1 比较值寄存器	111
	12.5.5	LPTIMER_TARGET 目标值寄存器	111
	12.5.6	LPTIMER_IE 中断使能寄存器	111
	12.5.7	LPTIMER_IF 中断标志寄存器	112
	12.5.8	LPTIMER_CTRL 控制寄存器	113
	12.5.9	LPTIMER_CCMCFG1 控制寄存器	113
	12.5.10	LPTIMER_CCMCFG2 控制寄存器	114
	12.5.11	LPTIMER_CMP2 比较值寄存器	114
	12.5.12	LPTIMER_LOAD 自动装载寄存器	115
	12.5.13	LPTIMER_BUFFER 计数值装载寄存器	115
	12.6 软件	‡工作流程	115
	12.6.1	普通定时器	116
	12.6.2	PWM 输出	116

	12.6.3	Trigger 脉冲触发计数模式	116
	12.6.4	外部异步脉冲触发计数模式	117
	12.6.5	TIMEOUT 模式	117
	12.6.6	输入捕获	118
13	GTIMER		119
	13.1 特個	生	119
	13.2 结构	均框图	119
	13.3 寄	存器描述	119
	13.3.1	GTIMER_CR0 控制寄存器	120
	13.3.2	GTIMER_CR1 控制寄存器	
	13.3.3	GTIMER_CR2 控制寄存器	
	13.3.4	GTIMER_CR3 控制寄存器	124
	13.3.5	GTIMER_IER 中断使能寄存器	
	13.3.6	GTIMER_SR 状态寄存器	
	13.3.7	GTIMER_EGR 事件产生寄存器	125
	13.3.8	GTIMER_CCMR0 捕捉/比较模式寄存器	126
	13.3.9	GTIMER_CCMR1 捕捉/比较模式寄存器	
	13.3.10	GTIMER_CCER 捕捉/比较使能寄存器	128
	13.3.11	GTIMER_CNT0 计数器寄存器	128
	13.3.12	GTIMER_CNT1 计数器寄存器	129
	13.3.13	GTIMER_PSC0 预分频寄存器	129
	13.3.14	GTIMER_PSC1 预分频寄存器	129
	13.3.15	GTIMER_ARR0 自动重载(auto-reload)寄存器	130
	13.3.16	GTIMER_ARR1 自动重载(auto-reload)寄存器	130
	13.3.17	GTIMER_ARR2 自动重载(auto-reload)寄存器	130
	13.3.18	GTIMER_ARR3 自动重载(auto-reload)寄存器	131
	13.3.19	GTIMER_CCR0 捕捉/比较寄存器	131
	13.3.20	GTIMER_CCR1 捕捉/比较寄存器	131
	13.3.21	GTIMER_CCR2 捕捉/比较寄存器	132
	13.3.22	GTIMER_CCR3 捕捉/比较寄存器	132
	13.4 使原		133
	13.4.1	Counter 工作模式	133
	13.4.2	输入捕获模式	133
	13.4.3	PWM 模式	133
	13.4.4	刹车功能	136
	13.5 使月		137
	13.5.1	普通定时器	137

	13.5.	2 PWM 输出	137
	13.5.	3 输入捕获	138
	13.5.	4 刹车功能	138
14	I2C		139
	14.1	既述	139
	14.2	主要特性	139
	14.3	寄存器描述	139
	14.3.	1 I2C_SLAVE_ADDR1 从设备地址寄存器 1	140
	14.3.	2 I2C_CLK_DIV 时钟分频寄存器	140
	14.3.	3 I2C_CR0 控制寄存器 0	140
	14.3.	4 I2C_CR1 控制寄存器 1	141
	14.3.	5 I2C_SR0 状态寄存器 0	142
	14.3.	6 I2C_SR1 状态寄存器 1	143
	14.3.	7 I2C_DR 数据寄存器	144
	14.3.	8 I2C_SLAVE_ADDR2 从设备地址寄存器 2	144
	14.4	功能描述	144
	14.4.	1 模式选择	144
	14.4.	2 I2C 从模式	145
	14.4.	3 I2C 主模式	146
	14.4.	4 SCL 总线滤波算法 0	147
	14.4.	5 SCL 总线滤波算法 1	148
	14.4.	6 SCL 为低时检测 SDA 的跳变	148
	14.5	吏用流程	149
	14.5.	1 初始化程序	149
	14.5.	2 作为主发送器	149
	14.5.	3 作为主接收器	150
	14.5.	4 作为从发送器	150
	14.5.	5 作为从接收器	151
15	ADC(柞	莫/数转换器)	152
	15.1	主要特性	152
	15.2	寄存器描述	152
	15.2.	1 ADC_IER 中断使能寄存器	153
	15.2.	2 ADC_GCR0 控制使能寄存器	153
	15.2.	3 ADC_GCR1 掉电使能寄存器	154
	15.2.	4 ADC_GCR2 配置寄存器	154
	15.2.	5 ADC_GCR3 采样寄存器	155
	15.2.	6 ADC_DR0 数据低位寄存器	155

	15.2.7	ADC_DR1 数据高位寄存器	155		
	15.2.8	ADC_HL 通道设置寄存器	156		
	15.2.9	ADC_CSTAT 启动寄存器	157		
	15.2.10	ADC_SPW 采样时钟脉冲宽度配置寄存器	157		
	15.2.11	ADC_VREF 电压基准源选择寄存器	158		
	15.2.12	ADC_CDR0 分频寄存器	158		
	15.2.13	ADC_CDR1 分频寄存器	159		
	15.3 使原	用流程	159		
16	LVD		161		
	16.1 概〕	<u>术</u>	161		
	16.2 寄宿	字器描述	161		
	16.2.1	LVD_CON 使能寄存器	161		
	16.2.2	OINTEN 中断使能寄存器	162		
	16.2.3	OINTUS 中断状态寄存器	162		
	16.2.4	LVD_OSTATUS 状态寄存器	162		
	16.2.5	LVD_RSTSTAT 复位寄存器	163		
	16.2.6	LVD_LV 滤波使能寄存器	164		
17	中断		165		
	17.1 特付	生	165		
	17.2 中国	断汇总	165		
18	指令集		166		
		令操作数说明			
	18.2 算		166		
		5. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.			
		#珠\FIIマ 居传送指令			
		制程序转移指令			
		製作指令			
10		*!	_		
19			1/1		
20	172				

图目录

图	3-1:	芯片启动流程图	6
图	4-1:	时钟结构图	47
图	4-2:	复位流程图	48
图	5-1:	写操作流程	56
冬	5-2:	擦除操作流程	57
冬	5-3:	擦除操作流程	58
冬	6-1:	PWM 输出范例	59
图	6-2:	PWM 输出周期或占空比改变范例	59
图	7-1:	端口模块图	64
冬	12-1:	结构框图	106
		结构框图	
		边沿对齐的 PWM 波形(ARR=7)	
		中央对齐的 PWM 波形(APR=7)	
图	14-1:	7 位从发送器的传送图	145
冬	14-2:	7 位从接收器的传送图	146
		7 位主发送器的传送图	
图	14-4:	7 位主接收器的传送图	147
夂	20-1	供由方案图	171

表目录

表	4-1:	寄存器列表	9
表	5-1:	寄存器列表	. 51
表	6-1:	输出时序(PWMxSS=1)	. 60
表	6-2:	寄存器列表	. 60
表	7-1:	寄存器配置	. 65
表	9-1:	UART0 工作方式列表	. 80
表	9-2:	UART1 工作方式列表	. 83
表	9-3:	寄存器列表	. 84
表	9-4:	寄存器列表	. 87
表	9-5:	波特率误差表	. 89
表	10-1:	寄存器列表	. 91
		寄存器列表	
		寄存器列表	
表	13-1:	寄存器描述	.119
表	14-1:	寄存器列表	139
表	16-1:	寄存器列表	152
耒	17_1	· 岑 左 哭孙耒	161

UM800YA 用户手册 系统概述

1 系统概述

UM800YA 是通用型 1T 8051 Core MCU。在同样的系统时钟下,比传统的 8051 运行更快速,性能更优越,指令代码完全兼容传统 8051。

1.1 主要特点

- 基于 1T 8051 指令流水线结构 8 位单片机
- eFlash: 最大 64KBytes (支持 IAP)
- RAM: Idata 256 字节, Xdata 最大 4096 字节
- 工作电压: 2.5~5.5V
- 时钟源
 - ▶ 内部高频 RC 振荡器: 16MHz
 - ▶ 内部低频 RC 振荡器: 38kHz
 - ▶ 外部时钟输入: < 16MHz
 - ▶ 晶体谐振器: < 16MHz
- 17 个双向 CMOS I/O 管脚 (内建上下拉电阻)
- 最大 3 个 GTIMER, 支持输入捕获和死区互补的 PWM 功能
- 最大 11 路 16 bit PWM 输出
- 1个 LPTIMER,每个支持2路输入捕获和2路PWM功能
- 4个串口 UART0/UART1/UART2/UART3
- 一个 SPI 接口,支持主从模式
- 8 外部通道, 1MSPS, 12 bit ADC@3V
- 看门狗定时器(WDT)
- 蜂鸣音发生器

UM800YA 用户手册 系统概述

● 中断源

- ➤ EFC 中断
- ▶ 全部 IO 支持外部中断
- ➤ UARTO/UART1/UART2/UART3
- ➤ ADC
- ➤ PWM 周期中断
- ➤ SPI
- ▶ 12C
- > LPTIMER
- ➤ GTIMER

● 复位源

- ➤ POR (上电复位)
- ➤ LVR (掉电复位)
- ➤ LVD (低电压检测)
- > 看门狗复位
- PIN Reset
- 内建低电压检测模块 (LVD)
- 省电模式支持
 - > Stop Mode 典型电流值 0.75μA
 - DeepSleep Mode 典型电流值 1.1μA
 - Sleep Mode 典型电流值 245μA
 - Active Mode 典型电流值 80μA/MHz

UM800YA 用户手册 系统概述

1.2 功能框图

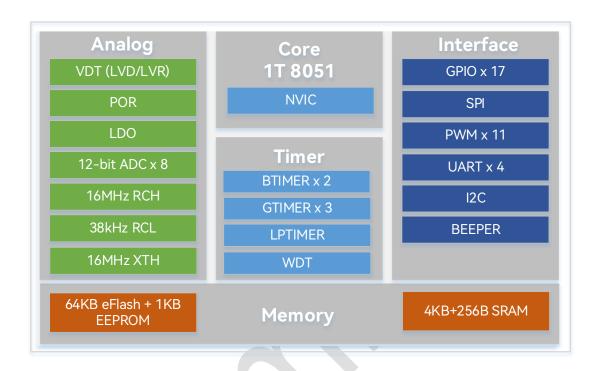


图 1-1: 芯片功能图

UM800YA 用户手册 处理器

2 处理器

2.1 主要特性

CPU 内核寄存器: ACC, B, PSW, SP, DPS, DPL, DPH, DPL1, DPH1。

2.2 程序状态字寄存器 (PSW)

程序状态字(PSW)寄存器包含了程序状态信息。

2.3 累加器 (ACC)

累加器 ACC 是一个常用的专用寄存器,常用于存放参加运算的操作数及运算结果。

2.4 B 寄存器

在乘除指令中, 会用到 B 寄存器, 在其他指令中, B 寄存器可作为通用暂存寄存器。

2.5 数据指针 (DPTR)

数据指针 DPTR 是一个 16 位专用寄存器,其高位字节寄存器用 DPH 表示,低位字节寄存器用 DPL 表示。它们既可以作为一个 16 位寄存器 DPTR 来处理,也可以作为 2 个独立的 8 位寄存器 DPH 和 DPL 来处理。包含双数据指针 DPTR&DPTR1,通过 DPS(bit0)寄存器选择。

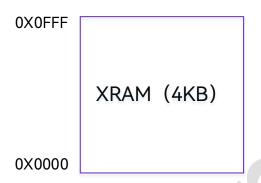
3 存储器

3.1 主要特性

存储器包括内部 RAM(ISRAM)和外部存储空间。外部存储空间中包括用于存放用户程序的程序空间 EFLASH。

3.2 内部 RAM (ISRAM)

芯片为数据存储提供了 256 个字节的内部 RAM(ISRAM),通过 MOV 指令访问。ISRAM 分为低 128 字节和高 128 字节。


- 低 128 字节的 ISRAM(地址从 00H 到 7FH)可直接或间接寻址。
- 高 128 字节的 ISRAM (地址从 80H 到 FFH) 只能间接寻址。
- 特殊功能寄存器(SFR, 地址从 80H 到 FFH)只能直接寻址。
- 外部 RAM 可通过 MOVX 指令直接访问。

高位 128 字节的 ISRAM 占用的地址空间和 SFR 相同,但在物理上与 SFR 的空间是分离的。当一个指令访问高于地址 7FH 的内部位置时,CPU 可以根据访问的指令类型来区分是访问高位 128字节数据 ISRAM 还是访问 SFR。

3.3 外部存储空间

芯片为数据存储提供了 4K Bytes 字节的外部存储空间 XRAM。

3.4 外部存储空间映射

芯片有两种启动模式: Boot 启动和 Main 启动。具体启动流程如下:

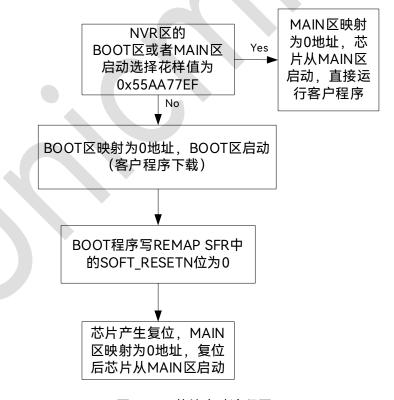
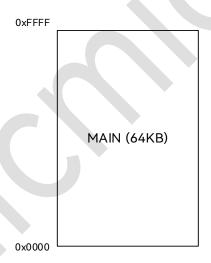



图 3-1: 芯片启动流程图

Remap 后地址映射为:

0xFFFF	
UXFFFF	RSV
0 0500	
0xCF00	UART2/3
0xCD00	12C
0xCC00	
0xC900	GTIMER0/1/2
0xC800	LPTIMER0
	SPI
0xC400 0xC000	IO IE/LVR LV/IO SR
UXCUUU	
0x9400	RSV
	NVR2(512B)
0x9200	NVR1(512B)
0x9000	RSV
0x8E00	
	EEPROM1(512B)
0x8C00	
0x8A0	EEPROM0(512B)
0	BOOT(2.5KB)
0x8000	233.(2.01(B)

注意:

- BOOT 区, NVR 区, EEPROM0 区和 EEPROM1 区, 用 xdata 关键字读取。
- SRAM 区数据用 xdata 关键字读取。
- Main 区基地址为 0x0000,使用 code 关键字读取。

3.5 程序存储器 EFLASH

EFLASH 的主要特性如下:

- UM800YA 包含 64K Bytes 程序空间。
- UM800YA 的 EFLASH 支持 IAP 功能(In Applicating Programing)
- 数据保存年限:至少10年

EFLASH 编程(可通过以下两种方式对 EFLASH 进行读写):

- IAP (In Applicating Programing)模式,用户程序代码可对未使用的 EFLASH 区进行编程, 具体请参见"EFC"章节。
- 2. 通过系统 Boot 程序, 通过串口对 EFLASH 编程。

4 系统配置(SFR)

4.1 寄存器描述

表 4-1: 寄存器列表

地址	名称	描述
80H	P0	P0寄存器
81H	SP	栈指针寄存器
82H ~ 85H	DPTR	数据指针寄存器
87H	PCON	PCON寄存器
8EH	PDSEL	PowerDown模式选择位寄存器
8FH	POREN	掉电复位使能寄存器
90H	P1	P1寄存器
91H	LDOTRIML	带隙微调寄存器
92H	DPS	数据指针选择寄存器
97H	PODR	端口P0驱动能力配置寄存器
9AH	IEN2	中断使能寄存器
ВСН	RCLTRIML	片内低频RCL修调值低位寄存器
9FH	RCLTRIM	片内低频RCL修调值高位寄存器
A0H	P2	P2寄存器
A1H	OUS	Flash擦写时间标尺寄存器
A4H	P0AL	P0_0~3端口中断上升沿/下降沿使能寄存器
A8H	IEN0	中断使能开关寄存器
A9H	IP0	中断优先级寄存器
В9Н	IP1	中断优先级寄存器
ABH	P0AH	P0_4端口中断上升沿/下降沿使能寄存器
AEH	P1AL	P1_0~3端口中断上升沿/下降沿使能寄存器
AFH	REMAP	REMAP寄存器
ВОН	P1AH	P1_4~5端口中断上升沿/下降沿使能寄存器
B1H	CLKST	系统时钟设置寄存器
В2Н	ESTCR	外部复位使能寄存器
взн	XTHCTR	外部XTH时钟寄存器
В6Н	ADCDR0	A/D通道接收数据低位寄存器
В7Н	ADCDR1	A/D通道接收数据高位寄存器

地址	名称	描述
В8Н	IEN1	中断使能寄存器
BDH	LDOTRIMH	带隙微调寄存器
BEH	RCHTRIMH	片内高频RCH频率修调值高位寄存器
BFH	RCHTRIML	片内高频RCH频率修调值低位寄存器
СОН	P2AL	P2_0~3端口中断上升沿/下降沿使能寄存器
D0H	PSW	程序状态字寄存器
D5H	P0PD	端口P0下拉配置寄存器
D6H	P0OD	端口P0开漏输出配置寄存器
D7H	POCS	端口PO输入类型配置寄存器
D9H	SYSDIV	高频时钟(RC16M或者XCLK)分频控制寄存器
DAH	P1PD	端口P1下拉配置寄存器
DBH	P1OD	端口P1开漏输出配置寄存器
DCH	P1CS	端口P1输入类型配置寄存器
DEH	PCLK0	时钟使能/禁止寄存器
DFH	PCLK1	时钟使能/禁止寄存器
E0H	ACC	累加器寄存器
E1H ~ E3H	PxIRQ	端口中断标志寄存器
E4H	P2PD	端口P2下拉配置寄存器
E5H	P1DR	端口P1驱动能力配置寄存器
E6H	PRESET0	复位释放寄存器
E7H	PRESET1	复位释放寄存器
P2AH	P2AH	P2_5~7端口中断上升沿/下降沿使能寄存器
E9H ~ EBH	PxIEN	端口中断使能控制寄存器
ECH	P2OD	端口P2开漏输出配置寄存器
F0H	В	B寄存器
F1H ~ F3H	PxPUN	端口上拉使能控制寄存器
F4H	P2CS	端口P2输入类型配置寄存器
F8H	CLKCON	系统时钟寄存器
F9H ~ FBH	PxOEN	端口方向控制寄存器
FCH	P2DR	端口P2驱动能力配置寄存器

4.1.1 P0

位编号	位符号	说明						
复位值	0	0	0	1	1	1	1	1
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写
P0	ı	-	ı	P0.4	P0.3	P0.2	P0.1	P0.0
80H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

位编号	位符号	说明
7-5	-	-
		● 当端口配置为输出状态时:
4	P0.4	0: 输出低电平; 1: 输出高电平。
		● 当端口配置为输入状态时:
		读到的是端口状态。
		● 当端口配置为输出状态时:
		0: 输出低电平;
3	P0.3	1:输出高电平。
		● 当端口配置为输入状态时:
		读到的是端口状态。
		● 当端口配置为输出状态时:
		0: 输出低电平;
2	P0.2	1: 输出高电平。
		● 当端口配置为输入状态时:
		读到的是端口状态。
		● 当端口配置为输出状态时:
		0: 输出低电平;
1	P0.1	1:输出高电平。
		● 当端口配置为输入状态时:
		读到的是端口状态。
		● 当端口配置为输出状态时:
		0: 输出低电平;
0	P0.0	1: 输出高电平。
		● 当端口配置为输入状态时:
		读到的是端口状态。

4.1.2 SP

							ı	
81H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SP				SF)			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	1	1	1
位编号	位符号	说明						
7-0	SP	● 执行 据压 ● 执行 堆栈栈顶	P是一个 8 位 PUSH、各和 栈。 POP、RET、 可以是片上P 7H,使得堆材	中子程序调用 RETI 等指令 内部 RAM(0	A、中断响加 令时,数据 OH-FFH)	立等指令时 退出堆栈后 的任意地址	,SP 先加 5 SP 再减 1	1,再将数

4.1.3 **DPTR**

82H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DPL		DPL						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7-0	DPL	数据指针	DPTR0 的低	8位。				

83H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DPH				DP	Н			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7-0	DPH	数据指针	DPTR0 的高	8位。				

84H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DPL1		DPL1						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7-0	DPL1	数据指针	DPTR1 的低	8位。				

85H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DPH1		DPH1						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7-0	DPH1	数据指针	数据指针 DPTR1 的高 8 位。					

4.1.4 PCON

87H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCON	-	-	-	1	ı	ı	STOP	IDLE
读/写	读	读	读	读	读	读	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明	说明					
7-2	-	-						
1	STOP	写 1,进入 Stop Mode,读一直返回 0。						
0	IDLE	写 1, 进	写 1,进入 Idle Mode,读一直返回 0。					

4.1.5 PDSEL

8EH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PDSEL	-	-	-	-	-	-	-	PDSEL
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
		•	•					

位编号	位符号	说明
7-1	-	-
		PowerDown 模式选择位:
		● 1: PowerDown 模式使能。当此位为 1,向 PCON 的 STOP 位写 1,将
0	PDSEL	进入 PowerDown 模式,系统所有时钟源全部关掉。
		● 0: PowerDown 模式禁止。当此位为 0,向 PCON 的 STOP 位写 1,将
		进入 Stop 模式,系统 RCL 时钟源在运行,XTH 和 RCH 时钟源关闭。

4.1.6 POREN

8FH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
POREN			-						
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写	
复位值	0	0	0	0	0	0	1	0	
位编号	位符号	说明	台明						
7-1	-	_							

4.1.7 P1

90H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P1	-	-	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
读/写	-	_	读/写	读/写	读/写	读/写	读/写	读/写
复位值	-	-	1	1	1	1	1	1
		1						
位编号	位符号	说明						
7-6	_	_						
5	P1.5	● 当端口配置为输出状态时: 0: 输出低电平 1: 输出高电平 ● 当端口配置为输入状态时: 读到的是端口状态						

	ľ	
		● 当端口配置为输出状态时:
		0:输出低电平
4	P1.4	1:输出高电平
		● 当端口配置为输入状态时:
		读到的是端口状态
		● 当端口配置为输出状态时:
		0:输出低电平
3	P1.3	1: 输出高电平
		● 当端口配置为输入状态时:
		读到的是端口状态
		● 当端口配置为输出状态时:
		0: 输出低电平
2	P1.2	1: 输出高电平
		● 当端口配置为输入状态时:
		读到的是端口状态
		● 当端口配置为输出状态时:
		0:输出低电平
1	P1.1	1: 输出高电平
		● 当端口配置为输入状态时:
		读到的是端口状态
		● 当端口配置为输出状态时:
		0: 输出低电平
0	P1.0	1: 输出高电平
		● 当端口配置为输入状态时:
		读到的是端口状态

4.1.8 LDOTRIML

91H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LDOTRIML		-		VTRM_BGRVT					
读/写		读		读/写					
复位值		0		5'h0F					
位编号	位符	号	说明						
7-5									
4-0	VTRM_BGRVT 带隙微调								

4.1.9 **DPS**

92H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DPS	-	-	-	-	-	-	-	DPS
读/写	读	读	读	读	读	读	读	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7-1	-	-						
	DDC	1:数据指	针选择 DP	ΓR1;				

0:数据指针选择 DPTR0。

4.1.10 PODR

0

DPS

97H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0DR	-	-	-	P0_4DR	P0_3DR	P0_2DR	P0_1DR	P0_0DR
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-5	ı	-
		端口 P0_4 驱动能力配置寄存器:
4	P0_4DR	0: 高驱动能力;
		1: 低驱动能力。
		端口 P0_3 驱动能力配置寄存器:
3	P0_3DR	0: 高驱动能力;
		1: 低驱动能力。
	P0_2DR	端口 P0_2 驱动能力配置寄存器:
2		0: 高驱动能力;
		1: 低驱动能力。
		端口 P0_1 驱动能力配置寄存器:
1	P0_1DR	0: 高驱动能力;
		1: 低驱动能力。
		端口 P0_0 驱动能力配置寄存器:
0	P0_0DR	0: 高驱动能力;
		1: 低驱动能力。

4.1.11 IEN2

9AH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IEN2	-	-	_	-	-	-	-	UART3INTEN
读/写	读	-	读	读	读	读	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号		说明					
7-1	-		-					
			UART3 中国	断使能:				
0	UART3IN	ITEN	1: UART3	中断使能;				
			0: UART3	中断关闭。				

4.1.12 RCLTRIML

BCH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RCLTRIML		RCLTC	TRIM			-		RCLTRIML
读/写		读/坚	3		读			读/写
复位值		0x7				0		0x1
位编号	位符号	说明						
7-4	RCLTCTRIM	片内低粉	顶 RCL 温漂	修调值				
3-1								
0	RCLTRIML	片内低频	页 RCL 修调	値低位				

4.1.13 RCLTRIM

9FH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
RCLTRIM		RCLTRIMH							
读/写		读/写							
复位值		0x7F							
位编号	位符	位符号 说明							
7-0	RCLTF	RCLTRIMH 片内低频 RCL 修调值高位							

4.1.14 P2

		当端口配置为输出状态时: 0: 输出低电平:						
位编号	位符号	说明						
复位值	1	1	1	0	1	1	0	1
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读/写
P2	P2.7	P2.6	P2.5	ı	P2.3	P2.2	ı	P2.0
A0H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

		当端口配置为输出状态时:
		0: 输出低电平;
7	P2.7	1: 输出高电平。
		当端口配置为输入状态时:
		读到的是端口状态。
		当端口配置为输出状态时:
		0: 输出低电平;
6	P2.6	1: 输出高电平。
		当端口配置为输入状态时:
		读到的是端口状态。
		当端口配置为输出状态时:
		0: 输出低电平;
5	P2.5	1: 输出高电平。
		当端口配置为输入状态时:
		读到的是端口状态。
4	-	-
		当端口配置为输出状态时:
		0: 输出低电平;
3	P2.3	1: 输出高电平。
		当端口配置为输入状态时:
		读到的是端口状态
		当端口配置为输出状态时:
		0: 输出低电平;
2	P2.2	1: 输出高电平。
		当端口配置为输入状态时:
		读到的是端口状态。
1	-	-

		当端口配置为输出状态时:
		0: 输出低电平;
0	P2.0	1: 输出高电平。
		当端口配置为输入状态时:
		读到的是端口状态。

4.1.15 OUS

A1H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OUS	-	OUS						
读/写	-	-	-	读/写	读/写	读/写	读/写	读/写
复位值	-	-	-	0	0	1	1	1
位编号	位符号	说明						
7-5	-	_						

Bit4

Bit3

Bit2

Bit1

Bit0

4.1.16 POAL

Bit7

A4H

Bit6

Bit5

P0AL	P0AL.7	P0AL.6	POAL.5	P0AL.4	P0AL.3	P0AL.2	P0AL.1	P0AL.0		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	1	1	1	1	1	1	1	1		
位编号	位符号	说明								
		P0_3 端口	中断下降沿	使能位:						
7	P0AL.7	0: 禁止端	口下降沿触	发中断;						
		1: 使能端	口下降沿触	发中断。						
		P0_3 端口	中断上升沿	使能位:						
6	P0AL.6	0: 禁止端	口上升沿触	!发中断;						
		1: 使能端	口上升沿触	发中断。						
		P0_2 端口中断下降沿使能位:								
5	5 P0AL.5		0: 禁止端口下降沿触发中断;							
		1: 使能端口下降沿触发中断。								
4	P0AL.4	P0_2 端口中断上升沿使能位:								
Т	1 OAL.4	0: 禁止端	口上升沿触	发中断;						

		1: 使能端口上升沿触发中断。
		P0_1 端口中断下降沿使能位:
3	P0AL.3	0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
		P0_1 端口中断上升沿使能位:
2	P0AL.2	0:禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。
		P0_0 端口中断下降沿使能位:
1	P0AL.1	0:禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
		P0_0 端口中断上升沿使能位:
0	P0AL.0	0:禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。

4.1.17 IEN0

A8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IEN0	EA	EADC	EPWM	ES0	-	ES1	-	EX0
读/写								
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
		总中断开关:
7	EA	0: 关闭中断;
		1: 打开中断。
		ADC 中断使能开关:
6	EADC	0: 关闭中断;
		1: 打开中断。
		PWM 中断使能开关:
5	EPWM	0: 关闭中断;
		1: 打开中断。
		UART0 中断使能开关:
4	ES0	0: 关闭中断;
		1: 打开中断。
3	-	-

		UART1 中断使能开关:
2	ES1	0: 关闭中断;
		1: 打开中断。
1	-	_
		外部中断初级使能开关:
0	EX0	0: 关闭中断;
		1: 打开中断。

4.1.18 IP

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IP0(A9H)	-	-	IP0.5	IP0.4	IP0.3	IP0.2	IP0.1	IP0.0
IP1(B9H)	-	-	IP1.5	IP1.4	IP1.3	IP1.2	IP1.1	IP1.0
读/写	读	读	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

每个中断源都可被单独设置为 4 个中断优先级之一, 分别通过 IPO 和 IP1 的相应位来设置实

现,具体设置见下表:

IP1.x	IP0.x	PriorityLevel
0	0	Level0(lowest)
0	1	Level1
1	0	Level2
1	1	Level3(highest)

Bit	对应中断
IP1.0, IP0.0	外部中断 0EX0 和 ADC 中断,UART2 中断
IP1.1, IP0.1	SPI 中断,UART3 中断
IP1.2, IP0.2	串口 1 中断 ES1
IP1.3, IP0.3	GTIMER2 中断,EFC 中断
IP1.4, IP0.4	串口 0 中断 ES0 和 GTIMER1 中断,LPTIMER 中断
IP1.5, IP0.5	PWM 中断 EPWM 和 GTIMERO 中断,I2C 中断

4.1.19 POAH

ABH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0AH	-	-	-	-	-	1	P0AH.1	P0AH.0
读/写	读	读	读	读	读	读	读/写	读/写
复位值	0	0	0	0	0	0	1	1

位编号	位符号	说明
7-2	-	-
		P0_4 端口中断下降沿使能位:
1	P0AH.1	0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
		P0_4 端口中断上升沿使能位:
0	P0AH.0	0: 禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。

4.1.20 P1AL

AEH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P1AL	P1AL.7	P1AL.6	P1AL.5	P1AL.4	P1AL.3	P1AL.2	P1AL.1	P1AL.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	1	1	1	1	1	1	1	1

位编号	位符号	说明
		P1_3 端口中断下降沿使能位:
7		0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
		P1_3 端口中断上升沿使能位:
6	P1AL.06	0: 禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。
		P1_2 端口中断下降沿使能位:
5		0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
		P1_2 端口中断上升沿使能位:
4		0: 禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。

		P1_1 端口中断下降沿使能位:
3	P1AL.3	0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
		P1_1 端口中断上升沿使能位:
2	P1AL.2	0: 禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。
1		P1_0 端口中断下降沿使能位:
		0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
0		P1_0 端口中断上升沿使能位:
		0: 禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。

4.1.21 REMAP

AFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
REMAP	-	-	-	-	1	REMAP_FLAG	REMAP_IM	REMAP
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	1	1

位编号	位符号	说明
7-3	-	-
		系统是否发生 REMAP 的标志。
2	REMAP_FLAG	1:系统发生 REMAP;
		0:系统未发生 REMAP。
1	REMAP_IM	写 0,地址直接发生 REMAP。
0	REMAP	写 0,地址发生 REMAP,并产生系统复位,复位后从 eFlash 的 main 区启
		动。

4.1.22 P1AH

вон	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P1AH	-	-	-	-	P1AH.3	P1AH.2	P1AH.1	P1AH.0
读/写	读	读	读	读	读/写	读/写	读/写	读/写
复位值	0	0	0	0	1	1	1	1
					ı	ı		•

位编号	位符号	说明
7-4	-	-
		P1_5 端口中断下降沿使能位:
3	P1AH.3	0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
		P1_5 端口中断上升沿使能位:
2	P1AH.2	0: 禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。
		P1_4 端口中断下降沿使能位:
1	P1AH.1	0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
		P1_4 端口中断上升沿使能位:
0	P1AH.0	0: 禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。

4.1.23 CLKST

B1H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CLKST	WACKDELAY		XTHSTAB		RCHSTAB		RCLSTAB	
读写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	1	0	0	0	0	0	0

位编号	位符号	说明					
		唤醒时间延时设置:					
		00: 64 个系统时钟周期;					
7-6	WACKDELAY	01: 128 个系统时钟周期;					
		10: 161 个系统时钟周期;					
		11: 184 个系统时钟周期。					
		XTH 稳定时间设定:					
		00: 1024 个 XTH 时钟周期;					
5-4	XTHSTAB	01: 4096 个 XTH 时钟周期;					
		10: 16384 个 XTH 时钟周期;					
		11: 32768 个 XTH 时钟周期。					

		RCH 稳定时间设定:
		00: 1个 RCH16M 时钟周期;
3-2	RCHSTAB	01: 4个 RCH16M 时钟周期;
		10: 32 个 RCH16M 时钟周期;
		11: 256 个 RCH16M 时钟周期。
		RCL 稳定时间设定:
		00: 1个 RCL38K 时钟周期;
1-0	RCLSTAB	01: 4个 RCL38K 时钟周期;
		10: 32 个 RCL38K 时钟周期;
		11: 256 个 RCL38K 时钟周期。

4.1.24 ESTCR

B2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ESTCR	-	-	-	_	ERSTEN	-	-	ERSTLVEN
读/写	读	读	读	读	读/写	读	读	读/写
复位值	0	0	0	0	1	0	0	0
位编号	位符号	说明						
7-4	-	-						
3	ERSTEN	1: 外音	外部复位引脚使能位: 1:外部复位功能使能; D:外部复位功能禁止。					
2-1	-	-	-					
0	ERSTLVEI	N I	邓复位滤波像 邓复位滤波势					

4.1.25 XTHCTR

взн	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
XTHCTR	ı	ı	ı	-	ŀ	EXTH_GSEL	-	EXTH_EN
读/写	读	读	读	读	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	1	0	0
位编号	位符号	说明						
7-4	-	-						

3-1	EXTH_GSEL	XTH 修调位			
		外部 XTH 时钟输入控制:			
0	EXTH_EN	1: XTH 时钟从 P0_0 输入;			
0	EXTH_EN	0: XTH 时钟由晶振产生。			
		注:使用 P0_0 输入时钟时,需设置 XCLKEN 为 1。			

Crystal Frequency	GSEL[2:0>	RSEL[1:0]
F≤1MHz	000	00
1MHz <f td="" ≤6mhz<=""><td>001</td><td>01</td></f>	001	01
6MHz< F ≤12MHz	010	10
12MHz< F ≤16MHz	011	10

4.1.26 ADCDR0

В6Н	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADCDR0		CHDATAL						
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0
位编号	位符号		说明					
7-0	CHD	CHDATAL A/D 通道接收数据低位寄存器。						

4.1.27 ADCDR1

В7Н	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
ADCDR1	-	-	-	-	CHDATAH				
读/写	读	读	读	读	读	读	读	读	
复位值	0	0	0	0	0	0	0	0	
位编号	位名	符号	说明						
7		-		-					
6-4									
3-0	CHDATAH		A/D 通道接收数据高位寄存器。						

4.1.28 IEN1

В8Н	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IEN1	UART2INT	GTIMER2I	I2CINTEN	LPTIMERI	EECINITENI	GTIMER1I	SPIINTEN	GTIMER0I
IEINI	EN	NTEN	IZCINTEN	NTEN	EFCINTEN	NTEN	SPIINTEIN	NTEN
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	
		UART2 中断使能:
7	UART2INTEN] 1: UART2 中断使能;
		0: UART2 中断关闭。
		GTIMER2 中断使能:
6	GTIMER2INTEN	1: GTIMER2 中断使能;
		0:GTIMER2 中断关闭。
		I2C 中断使能:
5	I2CINTEN	1: I2C 中断使能;
		0: I2C 中断关闭。
		LPTIMER 中断使能:
4	LPTIMERINTEN	1: LPTIMER 中断使能;
		0: LPTIMER 中断关闭。
		EFC 中断使能:
3	EFCINTEN	1: EFC 中断使能;
		0: EFC 中断关闭。
		GTIMER1 中断使能:
2	GTIMER1INTEN	1: GTIMER1 中断使能;
		0: GTIMER1 中断关闭。
		SPI 中断使能:
1	SPIINTEN	1: SPI 中断使能;
		0: SPI 中断关闭。
		GTIMER0 中断使能:
0	GTIMER0INTEN	1: GTIMER0 中断使能;
		0:GTIMER0 中断关闭。

4.1.29 LDOTRIMH

BDH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LDOTRIMH		-		VTRM_BGRTT					
读/写		读		读/写					
复位值	0			5'h0					
位编号	位符	位符号 说明							
7-5									
4-0	VTRM_BGRTT 带隙微调			 位					

4.1.30 RCHTRIMH

BEH	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0						
RCHTRIMH		RCHTRIMH						
读/写		读/写						
复位值		0x0						
位编号	位符号	位符号 说明						
7-0	RCHTRIMH	RCHTRIMH 片内高频 RCH 频率精调值						

4.1.31 RCHTRIML

BFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RCHTRIML		RCHCTRIM				-	-	-
读/写		读/写				读	读	读
复位值		0x3			0	0	0	0
位编号	位符号	说明						
7-4	RCHCTRIM	1 片内高频 RCH 粗调值						
3-0	_					·		

4.1.32 P2AL

C0H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P2AL	P2AL.7	P2AL.6	P2AL.5	P2AL.4	-	-	P2AL.1	P2AL.0
读/写	读/写	读/写	读/写	读/写	读	读	读/写	读/写
复位值	1	1	1	1	0	0	1	1

位编号	位符号	说明
		P2_3 端口中断下降沿使能位:
7	P2AL.7	0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
		P2_3 端口中断上升沿使能位:
6	P2AL.6	0: 禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。
		P2_2 端口中断下降沿使能位:
5	P2AL.5	0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
		P2_2 端口中断上升沿使能位:
4	P2AL.4	0: 禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。
3-2	-	_
		P2_0 端口中断下降沿使能位:
1	P2AL.1	0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
		P2_0 端口中断上升沿使能位:
0	P2AL.0	0: 禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。

4.1.33 PSW

D0H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PSW	CY	AC	F0	RS1	RS0	OV	F1	Р
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读
复位值	0	0	0	0	0	0	0	0
							•	

位编号	位符号	说明
		进位标志:
7	CY	当最后一次算术操作产生进位(加法)或借位(减法)时,该位置 1,其它算
		术操作将其清 0。
		辅助进位标志:
6	AC	当最后一次算术操作向高半字节有进位(加法)或借位(减法)时,该位置
		1,其它算术操作将其清 0。
5	F0	用户标志 0:
J	10	这是一个可位寻址、用于软件控制的通用标志位。
		RS1-RS0: 寄存器区选择:
		00: 页 0(映射到 00H-07H);
4-3	RS[1:0]	01: 页 1(映射到 08H-0FH);
		10: 页 2(映射到 10H-17H);
		11: 页 3(映射到 18H-1FH)。
1	F1	用户标志 1:
· ·	1 1	这是一个可位寻址、用于软件控制的通用标志位。
		奇偶校验位:
0	Р	0: 累加器中8个位的和为偶数;
		1: 累加器中 8 个位的和为奇数。

4.1.34 POPD

D5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0PD	-	-	-	P0_4PD	P0_3PD	P0_2PD	P0_1PD	P0_0PD
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-5	-	-
		端口 P0_4 下拉配置寄存器:
4	P0_4PD	0: 禁止;
		1: 使能。
		端口 P0_3 下拉配置寄存器:
3	P0_3PD	0: 禁止;
		1: 使能。
2	DO 3DD	端口 P0_2 下拉配置寄存器:
2	P0_2PD	0: 禁止;

		1: 使能。
		端口 P0_1 下拉配置寄存器:
1	P0_1PD	0: 禁止;
		1: 使能。
		端口 P0_0 下拉配置寄存器:
0	P0_0PD	0: 禁止;
		1: 使能。

4.1.35 POOD

D6H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0OD	-	-	-	P0_40D	P0_30D	P0_20D	P0_10D	P0_00D
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-5	-	_
		端口 P0_4 开漏输出配置寄存器:
4	P0_4OD	0: 禁止;
		1: 使能。
		端口 P0_3 开漏输出配置寄存器:
3	P0_3OD	0: 禁止;
		1: 使能。
		端口 P0_2 开漏输出配置寄存器:
2	P0_2OD	0: 禁止;
		1: 使能。
		端口 P0_1 开漏输出配置寄存器:
1	P0_10D	0: 禁止;
		1: 使能。
		端口 P0_0 开漏输出配置寄存器:
0	P0_00D	0: 禁止;
		1: 使能。

4.1.36 POCS

D7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0CS	-	-	-	P0_4CS	P0_3CS	P0_2CS	P0_1CS	P0_0CS
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明					
7-5	-						
		端口 P0_4 输入类型配置寄存器:					
4	P0_4CS	0: Schmitt input buffer;					
		1: CMOS input buffer。					
		端口 P0_3 输入类型配置寄存器:					
3	P0_3CS	0: Schmitt input buffer;					
		1: CMOS input buffer。					
		端口 P0_2 输入类型配置寄存器:					
2	P0_2CS	0: Schmitt input buffer:					
		1: CMOS input buffer。					
		端口 P0_1 输入类型配置寄存器:					
1	P0_1CS	0: Schmitt input buffer;					
		1: CMOS input buffer。					
		端口 P0_0 输入类型配置寄存器:					
0	P0_0CS	0: Schmitt input buffer;					
		1: CMOS input buffer。					

4.1.37 SYSDIV

D9H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYSDIV	1	-	-	-	1	SYSDIV[2]	SYSDIV[1]	SYSDIV[0]
读/写	读	读	读	读	读	读/写	读/写	读/写
复位值	0	0	0	0	0	0	1	0
位编号	位符号	说明						
7-3	-	-						

		高频时钟(RC16M 或者 XCLK)分频控制,分频后输出作为系统时钟。
		000: HSCLK 不分频;
		001: HSCLK/2 分频输出;
		010: HSCLK /4 分频输出;
2-0	SYSDIV[1:0]	011: HSCLK /8 分频输出;
		100: HSCLK /16 分频输出;
		101: HSCLK /32 分频输出;
		110: HSCLK /64 分频输出;
		111: HSCLK /128 分频输出。

4.1.38 P1PD

DAH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P1PD	-	-	P1_5PD	P1_4PD	P1_3PD	P1_2PD	P1_1PD	P1_0PD
读/写	读	读	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
	江村五三	vcos
7-6	-	-
		端口 P1_5 下拉配置寄存器:
5	P1_5PD	0: 禁止;
		1: 使能。
		端口 P1_4 下拉配置寄存器:
4	P1_4PD	0: 禁止;
		1: 使能。
		端口 P1_3 下拉配置寄存器:
3	P1_3PD	0: 禁止;
		1: 使能。
		端口 P1_2 下拉配置寄存器:
2	P1_2PD	0: 禁止;
		1: 使能。
		端口 P1_1 下拉配置寄存器:
1	P1_1PD	0: 禁止:
		1: 使能。
		端口 P1_0 下拉配置寄存器:
0	P1_0PD	0: 禁止;
		1: 使能。

4.1.39 P10D

DBH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P1OD	-	-	P1_50D	P1_40D	P1_30D	P1_20D	P1_10D	P1_00D
读/写	读	读	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

		VA BEI
位编号	位符号	说明
7-6	-	-
		端口 P1_5 开漏输出配置寄存器:
5	P1_50D	0: 禁止;
		1: 使能。
		端口 P1_4 开漏输出配置寄存器:
4	P1_40D	0: 禁止;
		1: 使能。
		端口 P1_3 开漏输出配置寄存器:
3	P1_30D	0: 禁止;
		1: 使能。
		端口 P1_2 开漏输出配置寄存器:
2	P1_20D	0: 禁止;
		1: 使能。
		端口 P1_1 开漏输出配置寄存器:
1	P1_10D	0: 禁止;
		1: 使能。
		端口 P1_O 开漏输出配置寄存器:
0	P1_00D	0: 禁止;
		1: 使能。

4.1.40 P1CS

DCH	Bit7	Bit6	Bit5	Bit4 Bit3		Bit2	Bit1	Bit0
P1CS	ı	-	P1_5CS	P1_4CS	P1_3CS	P1_2CS	P1_1CS	P1_0CS
读/写	读	读	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-6	-	-
		端口 P1_5 输入类型配置寄存器:
5	P1_5CS	0: Schmitt input buffer;
		1: CMOS input buffer。
		端口 P1_4 输入类型配置寄存器:
4	P1_4CS	0: Schmitt input buffer;
		1: CMOS input buffer。
		端口 P1_3 输入类型配置寄存器:
3	P1_3CS	0: Schmitt input buffer;
		1: CMOS input buffer。
		端口 P1_2 输入类型配置寄存器:
2	P1_2CS	0: Schmitt input buffer;
		1: CMOS input buffer。
		端口 P1_1 输入类型配置寄存器:
1	P1_1CS	0: Schmitt input buffer;
		1: CMOS input buffer。
		端口 P1_0 输入类型配置寄存器:
0	P1_0CS	0: Schmitt input buffer;
		1: CMOS input buffer。

4.1.41 PCLK0

DEH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCLK0	I2CCEN	LPTIMCEN	PWMCEN	ADCCEN	SPICEN	WDTCEN	UART1CEN	UART0CEN
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	1	1	1	1	1	1	1	1

位编号	位符号					
7	I2CCEN	1: I2C 时钟使能;				
/	IZCCEIN	0: I2C 时钟禁止。				
4	6 LPTIMCEN	1: LPTIMER 时钟使能;				
0		0: LPTIMER 时钟禁止。				
5	PWMCEN	1: PWM 时钟使能;				
5	PWIMCEIN	0: PWM 时钟禁止。				
	ADCCEN	1: ADC 时钟使能;				
4	ADCCEN	0: ADC 时钟禁止。				

2	3 SPICEN	1: SPI 时钟使能;
3	SPICEN	0: SPI 时钟禁止。
2	WDTCEN	1: WDT 时钟使能;
	Z WDICEN	0: WDT 时钟禁止。
1	UART1CEN	1: UART1 时钟使能;
1	UARTICEN	0: UART1 时钟禁止。
0	LIADTOCENI	1: UARTO 时钟使能;
	UART0CEN	0: UARTO 时钟禁止。

4.1.42 PCLK1

DFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCLK1	UART2CEN	GTIMER2	GTIMER1C	1	GTIMER	GIO2CEN	GIO1CEN	GIO0C
		CEN	EN		0CEN			EN
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	1	1	1	1	1	1	1	1

位编号	位符号	说明
7	UART2CEN	1: UART2 时钟使能;
,	OARTZCEN	0: UART2 时钟禁止。
6	GTIMER2CEN	1: GTIMER2 时钟使能;
0	GTIMERZCEN	0: GTIMER2 时钟禁止。
5	GTIMER1CEN	1: GTIMER1 时钟使能;
5	GIIMERICEN	0: GTIMER1 时钟禁止。
4	-	-
3	GTIMER0CEN	1: GTIMER0 时钟使能;
3		0: GTIMER0 时钟禁止。
2	GIO2CEN	1: GPIO2 时钟使能;
2	GIOZCEN	0: GPIO2 时钟禁止。
1	GIO1CEN	1: GPIO1 时钟使能;
I	GIOTCEN	0: GPIO1 时钟禁止。
0	CIOOCEN	1: GPIO0 时钟使能;
U	GIO0CEN	0: GPIO0 时钟禁止。

4.1.43 ACC

E0H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
ACC			ACC						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	0	0	0	0	0	0	0	0	
位编号	位符号	说明							
7-0	ACC	累加器 ACC 是	一个常用的	专用寄存器	·····································	放参加运算的	内操作数及 适	运算结果。	

4.1.44 PxIRQ

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0IRQ(E1H)	-	_	-	P0IRQ.4	P0IRQ.3	P0IRQ.2	P0IRQ.1	P0IRQ.0
P1IRQ(E2H)	-	_	P1IRQ.5	P1IRQ.4	P1IRQ.3	P1IRQ.2	P1IRQ.1	P1IRQ.0
P2IRQ(E3H)	P2IRQ.7	P2IRQ.6	P2IRQ.5	-	P2IRQ.3	P2IRQ.2	-	P2IRQ.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7-0	PxIRQ.y x=0-4, v=0-7	端口中断标志位: 0: 端口未产生中断; 1: 端口产生了中断。 写 0 清 0。						

4.1.45 P2PD

E4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P2PD	P2_7PD	P2_6PD	P2_5PD	-	P2_3PD	P2_2PD	1	P2_0PD
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
		端口 P2_7 ⁻	下拉配置寄存	字器:				
7	P2_7PD	0: 禁止;						
		1: 使能。						

		端口 P2_6 下拉配置寄存器:
6	P2_6PD	0: 禁止;
		1: 使能。
		端口 P2_5 下拉配置寄存器:
5	P2_5PD	0: 禁止
		1: 使能。
4	_	-
		端口 P2_3 下拉配置寄存器:
3	P2_3PD	0: 禁止;
		1: 使能。
		端口 P2_2 下拉配置寄存器:
2	P2_2PD	0: 禁止;
		1: 使能。
1	_	-
		端口 P1_0 下拉配置寄存器:
0	P2_0PD	0: 禁止;
		1: 使能。

4.1.46 P1DR

-								
E5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P1DR	-	-	P1_5DR	P1_4DR	P1_3DR	P1_2DR	P1_1DR	P1_0DR
读/写	读	读	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	1	1	1	1	1	1
位编号	位符号	说明						

位编号	位符号	说明				
7-6	1	-				
		端口 P1_5 驱动能力配置寄存器:				
5	P1_5DR	0: 高驱动能力;				
		1: 低驱动能力。				
		端口 P1_4 驱动能力配置寄存器:				
4	P1_4DR	0: 高驱动能力;				
		1: 低驱动能力。				
		端口 P1_3 驱动能力配置寄存器:				
3	P1_3DR	0: 高驱动能力;				
		1: 低驱动能力。				
2	P1_2DR	端口 P1_2 驱动能力配置寄存器:				

		0: 高驱动能力;
		1: 低驱动能力。
		端口 P1_1 驱动能力配置寄存器:
1	P1_1DR	0: 高驱动能力;
		1: 低驱动能力。
		端口 P1_0 驱动能力配置寄存器:
0	P1_0DR	0: 高驱动能力;
		1: 低驱动能力。

4.1.47 PRESET0

E6H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PRESET0	I2CREN	LPTIMREN	PWMREN	ADCREN	SPIREN	WDTREN	UART1REN	UARTOREN
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	1	1	1	1	1	1	1	1

位编号	位符号	说明
7	IOCDENI	1: I2C 复位释放;
,	I2CREN	0: I2C 复位。
6	LPTIMRE	1: LPTIM 复位释放;
0	N	0: LPTIM 复位。
5	PWMRE	1: PWM 复位释放;
5	N	0: PWM 复位。
4	ADCREN	1: ADC 复位释放;
4		0: ADC 复位。
3	SPIREN	1: SPI 复位释放;
3		0: SPI 复位。
2	WDTREN	1: WDT 复位释放;
2	WDIKLIN	0: WDT 复位。
1	UART1R	1: UART1 复位释放;
ı	EN	0: UART1 复位。
0	UART0R	1: UART0 复位释放;
U	EN	0: UARTO 复位。

4.1.48 PRESET1

E7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PRESET1	UART2REN	GTIMER2	GTIMER1REN	1	GTIMER0R	GIO2REN	GIO1REN	GIO0REN
		REN			EN			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	1	1	1	1	1	1	1	1

位编号	位符号	说明
7	UART2REN	1: UART2 复位释放;
,	UARTZREN	0: UART2 复位。
6	GTIMER2REN	1: GTIMER2 复位释放;
0	GTIMERZKEN	0: GTIMER2 复位。
5	GTIMER1REN	1: GTIMER1 复位释放;
5	GIIMERIKEN	0: GTIMER1 复位。
4	-	-
3	GTIMER0REN	1: GTIMER0 复位释放;
3	GIIMERUREN	0: GTIMER0 复位。
2	CIOODEN	1: GPIO2 复位释放;
2	GIO2REN	0: GPIO2 复位。
1	GIO1REN	1: GPIO1 复位释放;
I	GIOTREN	0: GPIO1 复位。
	CIOODEN	1: GPIO0 复位释放;
0	GIO0REN	0: GPIO0 复位。

4.1.49 P2AH

E8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P2AH	P2AH.7	P2AH.6	P2AH.5	P2AH.4	P2AH.1	P2AH.0	-	-
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读	读
复位值	1	1	1	1	1	1	0	0

位编号	位符号	说明
		P2_7 端口中断下降沿使能位:
7	P2AH.7	0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。

		P2_7 端口中断上升沿使能位:
6	P2AH.6	0: 禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。
		P2_6 端口中断下降沿使能位:
5	P2AH.5	0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
		P2_6 端口中断上升沿使能位:
4	P2AH.4	0: 禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。
		P2_5 端口中断下降沿使能位:
3	P2AH.1	0: 禁止端口下降沿触发中断;
		1: 使能端口下降沿触发中断。
		P2_5 端口中断上升沿使能位:
2	P2AH.0	0: 禁止端口上升沿触发中断;
		1: 使能端口上升沿触发中断。
1-0	_	-

4.1.50 PxIEN

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
POIEN(E9H)	_	- (-	P0IEN.4	P0IEN.3	P0IEN.2	P0IEN.1	P0IEN.0
P1IEN(EAH)	-	-	P1IEN.5	P1IEN.4	P1IEN.3	P1IEN.2	P1IEN.1	P1IEN.0
P2IEN(EBH)	P2IEN.7	P2IEN.6	P2IEN.5	-	P2IEN.3	P2IEN.2	-	P2IEN.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
A								

位编号	位符号	说明
	PxIEN.v	端口中断使能控制位:
7-0	x=0-4, y=0-7	0: 关闭端口中断功能;
	x=0-4, y=0-7	1: 使能端口中断功能。

4.1.51 P2OD

ECH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P2OD	P2_70D	P2_60D	P2_50D	-	P2_30D	P2_20D	-	P2_00D
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
		端口 P2_7 开漏输出配置寄存器:
7	P2_70D	0: 禁止;
		1: 使能。
		端口 P2_6 开漏输出配置寄存器:
6	P2_6OD	0: 禁止;
		1: 使能。
		端口 P2_5 开漏输出配置寄存器:
5	P2_50D	0: 禁止;
		1: 使能。
4	-	_
		端口 P2_3 开漏输出配置寄存器:
3	P2_30D	0: 禁止;
		1: 使能。
		端口 P2_2 开漏输出配置寄存器:
2	P2_20D	0: 禁止;
		1: 使能。
1	-	_
		端口 P2_O 开漏输出配置寄存器:
0	P2_00D	0: 禁止;
		1: 使能。

4.1.52 B

F0H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
В			В									
读/写	读	读/写										
复位值	0	0	0	0	0	0	0	0				
位编号	位符号	说明										
7-0	在乘除指令中,会用到 B 寄存器,在其他指令中,B 寄存器可作为通用暂存寄											
7-0	В	存器。										

4.1.53 PxPUN

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0PUN(F1H)	-	-	-	P0PUN.4	P0PUN.3	P0PUN.2	P0PUN.1	P0PUN.0
P1PUN(F2H)	1	1	P1PUN.5	P1PUN.4	P1PUN.3	P1PUN.2	P1PUN.1	P1PUN.0
P2PUN(F3H)	P2PUN.7	P2PUN.6	P2PUN.5	-	P2PUN.3	P2PUN.2	_	P2PUN.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	1	1	1	1	1	1	1	1
位编号	位符号	说明						
7-0	PxPUN.y x=0-4, y=0-7		拉使能控制 能内部上拉 闭内部上拉	•	电阻参考值	60kΩ) :		

4.1.54 P2CS

F4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P2CS	P2_7CS	P2_6CS	P2_5CS	-	P2_3CS	P2_2CS	-	P2_0CS
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明			
		端口 P2_7 输入类型配置寄存器:			
7	P2_7CS	0: Schmitt input buffer;			
		1: CMOS input buffer。			
		端口 P2_6 输入类型配置寄存器:			
6	P2_6CS	0: Schmitt input buffer;			
		1: CMOS input buffer。			
		端口 P2_5 输入类型配置寄存器:			
5	P2_5CS	0: Schmitt input buffer;			
		1: CMOS input buffer。			
4	_	-			
		端口 P2_3 输入类型配置寄存器:			
3	P2_3CS	0: Schmitt input buffer;			
		1: CMOS input buffer。			

		端口 P2_2 输入类型配置寄存器:
2	2 P2_2CS	0: Schmitt input buffer;
		1: CMOS input buffer。
1	-	-
		端口 P2_0 输入类型配置寄存器:
0	P2_0CS	0: Schmitt input buffer;
		1: CMOS input buffer。

4.1.55 CLKCON

F8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CLKCON	SYSCLKSEL	RC38KF	RC16MF	XCLKF	RC38KEN	RC16MEN	XCLKEN	HSCLKSEL
读/写	读/写	读	读	读	读/写	读/写	读/写	读/写
复位值	0	1	1	0	1	1	0	0
位编号	位符号	说明						
7	SYSCLKSEL	系统时钟源头选择位,即 SYSCLK 来自 HSCLK 和 RCL38K 的选择位: 0:选择 HSCLK 作为系统时钟源; 1:选择 RCL38K 作为系统时钟源。						
6	RC38KF	RC38K 时钟源标志位: 0: RC38K 未正常启动; 1: RC38K 已正常启动。						
5		RC16M 时钟源标志位: 0: RC16M 未正常启动; 1: RC16M 已正常启动。						
4	XCLKF	XCLK 时钟源开关标志位: 0: 未检测到有效的外部输入时钟; 1: 已检测到有效的外部输入时钟。						
3	RC38KEN	RC38K 时钟源开关控制位: 0: 关闭 RC38K; 1: 打开 RC38K。						
2	RC16MEN	0: 关闭内	1: 打开 RC38K。 RC16M 时钟源开关控制位: 0: 关闭内部 RC16M 时钟源,若当前系统时钟为 RC16M,写 0 无效; 1: 打开内部 RC16M 时钟源。					

		XCLK 时钟源开关控制位:
1	XCLKEN	0: 关闭 XCLK, P0.0, P0.1 为 GPIO 功能;
I	I XCLKEN	如果当前系统时钟为 XCLK,XCLKEN 写 0 不能关闭 XCLK。
		1: 打开 XCLK, P0.0, P0.1 作为晶振或外部 Clock 输入功能。
		高频时钟源头选择位,即 HSCLK 来自 RCH16M 和 XCLK 的选择位:
0	HSCLKSEL	0:选择 RC16M 作为系统时钟源;
		1:选择 XCLK 作为系统时钟源。

4.1.56 PxOEN

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0OEN(F9H)	-	-	-	P00EN.4	P00EN.3	P0OEN.2	POOEN.1	P00EN.0
P10EN(FAH)	-	1	P10EN.5	P10EN.4	P10EN.3	P10EN.2	P10EN.1	P10EN.0
P2OEN(FBH)	P20EN.7	P2OEN.6	P20EN.5	-	P20EN.3	P20EN.2	1	P2OEN.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	1	1	1	1	1	1	1	1
位编号	位符号	说明						
7-0	PxOEN.y x=0-4, y=0	0: 输出	可控制位: 模式; 模式。		•			

4.1.57 P2DR

FCH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P2DR	P2_7DR	P2_6DR	P2_5DR	-	P2_3DR	P2_2DR	ı	P2_0DR
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读/写
复位值	1	1	1	0	1	1	0	1
位编号	位符号	说明						
7		端口 P2_7 驱动能力配置寄存器: 0: 高驱动能力; 1: 低驱动能力。						
6		端口 P2_6 驱动能力配置寄存器: 0: 高驱动能力; 1: 低驱动能力。						
5	P2_5DR	端口 P2_5 引	端口 P2_5 驱动能力配置寄存器:					

		0: 高驱动能力;
		1: 低驱动能力。
4	-	_
		端口 P2_3 驱动能力配置寄存器:
3	P2_3DR	0: 高驱动能力;
		1: 低驱动能力。
		端口 P2_2 驱动能力配置寄存器:
2	P2_2DR	0: 高驱动能力;
		1: 低驱动能力。
1	-	_
		端口 P2_0 驱动能力配置寄存器:
0	P2_0DR	0: 高驱动能力;
		1: 低驱动能力。

4.2 系统时钟

4.2.1 主要特性

- 内建 16M RC 高频振荡器。
- 内建 38K RC 低频振荡器。
- 支持外部晶振输入 (2M~16M) 作为系统时钟。
- 内建系统时钟分频器。

4.2.2 时钟定义

- RCH16M:表示内部 16M RC 高频振荡器。
- RCL38K:表示内部 38K RC 低频振荡器。
- XCLK: 晶体谐振器时钟(2-16MHZ 晶体谐振器)或外部时钟输入。

4.2.3 时钟结构图

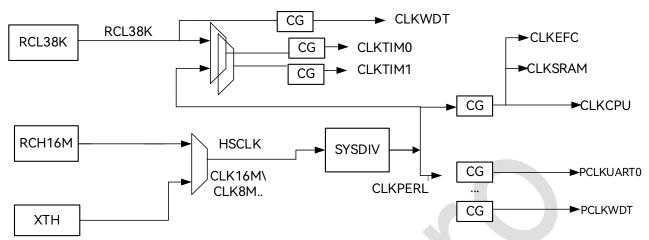


图 4-1: 时钟结构图

4.3 复位源

4.3.1 主要特性

包含以下复位源:

- PIN RESET
- LVD 复位
- LVR (掉电复位)
- 看门狗复位(WDT)
- 上电复位(POR)

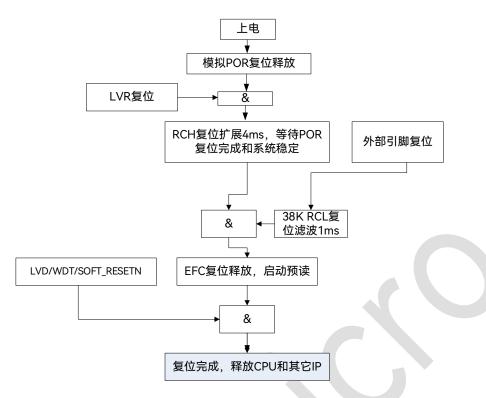


图 4-2: 复位流程图

注意:

- LVD 复位时,不会复位 LVDCON 寄存器。
- LVR 复位与 POR 复位同为全局复位,复位所有的数字逻辑。

4.3.2 看门狗复位

看门狗定时器是一个递增计数器,看门狗定时器使用内部 RC38K 为时钟源,如果要使能看门狗,必须先确保 RC38K 已打开。在掉电模式下,看门狗会在定时器溢出时,复位芯片。

读或者写 RSTSTAT 寄存器均自动清除看门狗计数。

4.3.3 LVD 与 LVR 复位

LVD 为低电压检测单元,可以由软件配置,在外部供电电压低到检测阈值以下时,会产生一个复位。LVD 复位可以复位 CPU 和除 EFC 外的其它外设,不复位 EFC。

LVR 为下电复位单元,其作用域和 POR 相同,为全局复位。当外部供电电压小于 LVR 的固定电压(2.2V)时,LVR 产生复位,复位整个芯片。

4.3.4 外部复位

外部复位作用域和 POR 相同,为全局复位。当 RESETN IO 为 0,且 RESETN 作为外部复位功能使用时,外部复位有效,复位整个芯片。

4.3.5 寄存器

复位相关寄存器请参见 POREN, LVD_RSTSTAT 和 LVD_CON 章节。

4.4 低功耗模式

4.4.1 主要特性

- 支持睡眠模式 (Sleep)、深度睡眠模式 (DeepSleep) 和停止模式 (Stop) 三种省电模式。
- 中断和复位可以退出三种省电模式。

4.4.2 低功耗模式

芯片除正常工作模式外,为了降低芯片的电流消耗,提供三种低功耗模式:休眠(Sleep)模式、深度休眠(Deepsleep)模式和停止(Stop)模式。

在休眠模式下, CPU 停止工作, 保留中断处理功能。其它外设等模块时钟和复位可由软件设置。 休眠模式由软件向特定的 SFR (PCON -> IDLE) 写 1 进入, 唤醒由中断触发。

深度休眠模式是休眠模式的升级,在此模式下,CPU 停止运行,高速时钟停止运行,低功耗功能模块(LPTIMER、WDT)可以运行。深度休眠模式由软件向特定的 SFR(PCON -> STOP)写 1进入,唤醒由中断触发。

停止模式下,高速时钟和低速时钟均停止运行,系统无任何运行的时钟,一切外围模块均停止运行。上电复位信号有效,IO 状态保持,IO 中断有效,所有寄存器,RAM 和 CPU 数据保存状态时的功耗。停止模式要先设置 SFR 中 PDSEL 寄存器为 1,然后向 PCON -> STOP 写 1 进入,唤醒只能

由外部引脚的电平来唤醒。

4.4.3 低功耗模式表

模式	模式描述	进入条件	退出条件		
Sleep	CPU 大部分休眠; 软件可关闭各模块时钟。	1. 根据需要,关闭各外设模块时钟, 仅留下需要监测中断事件的模块。 2. PCON -> IDLE 写 1。	 CPU 检测到中断或事件发生。 进入中断服务程序清中断并返回。 继续执行后续指令。 		
Deepsleep	CPU 大部分休眠; 高速时钟源关闭, 低速时钟源运行。	1. 根据需要,关闭各外设模块时钟, 仅留下需要监测中断事件的模块。 2. PCON -> STOP 写 1。	 CPU 检测到中断或事件发生。 进入中断服务程序清中断并返回。 继续执行后续指令。 		
Stop	关闭系统所有时钟。	 根据需要,设置 IO 唤醒的条件。 设置 SFR 中 PDSEL 寄存器为 1。 PCON -> STOP 写 1。 	1. 外部 IO 唤醒事件到来。 2. CPU 检测到 IO 唤醒事件中断发生。 3. 进入中断服务程序清中断并返回。 4. 继续执行后续指令。		

5 EFC

5.1 主要特性

● 支持 EFLASH 的读写 (8bit)、Sector 擦除等操作流程。

- 读等待时间可以配置。
- 主区有 128 个 Sector, 每个 512 字节。
- 支持擦写保护功能。
- 支持自动锁总线功能。
- Sector 擦除时间 19ms (max), Chip 擦除时间 70ms (max), Word 写 70μs (max), 读时间 25ns (max)。

5.2 EFLASH 读效率

当 RD_WAIT 值设置为 0 时,CPU 取指时无效率损失,读 EFLASH 与读取 ROM 在控制器端时序相同。RD_WAIT 值设置为 1 时,EFC 总线在每个读操作时会被拉低 1 个周期。

5.3 参数地址

SN 号获取地址: 0x9248, size: 16 bytes。

VCAP 获取地址: 0x919C, size: 4 bytes。

5.4 寄存器描述

表 5-1: 寄存器列表

地址	名称	描述
A7H	EFC_OPSET	设置寄存器
АЗН	OINTUS	中断状态寄存器

D1H~D2H	EFC_OADRL/H	EFLASH烧录地址寄存器
D3H	EFC_ODATA	EFLASH烧录数据寄存器
D4H	EFC_OCTRL	电压输出寄存器
A2H	OINTEN	中断使能寄存器

5.4.1 EFC_OPSET 设置寄存器

A7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EFC_OPSET	EEPROM_SET	NVR_SET	R	DWAI	Т	CHIPSERSET	PAGESERSET	PAGEWRSET
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	1

位编号	位符号	说明					
7	EEPROM_SET	Boot 模式下,Flash main 区后 4k 内存擦写使能位。					
6	NVR_SET	EEPROM 区擦写使能位。					
5-3	RDWAIT	读等待时间设置。					
2	CLUDCEDCET	1: CHIP 擦除模式使能;					
2	CHIPSERSET	0: CHIP 擦除模式关闭。					
1	DACESEDSET	1: PAGE 擦除模式使能;					
I	PAGESERSET	0: PAGE 擦除模式关闭。					
0	DA CEW/DSET	1: PAGE 写模式使能;					
U	PAGEWRSET	0: PAGE 写模式关闭。					

5.4.2 OINTUS 中断状态寄存器

АЗН	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OINTUS		NVRCERR	VDD_LOW	WPOGERR	BOOTERR	NVR1ERR	NVR0ERR	PRODONE
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0 0 0 0 0 0					
位编号	位符号	说明	说明					
7	-	-	-					
6	NVRCERR	0: NVRC	1: NVRC 错误中断状态位; 0: NVRC 错误中断状态位。 写 1 清 0。					
5	VDD_LOW	1: LVD 低电压中断状态位;						

	T	
		0: LVD 低电压中断状态位。
		写 1 清 0。
		1: 操作错误中断状态位;
4	WPOGERR	0:操作错误中断状态位。
		写 1 清 0。
		1: BOOT 错误中断状态位;
3	BOOTERR	0: BOOT 错误中断状态位。
		写 1 清 0。
		1: NVR1 错误中断状态位;
2	NVR1ERR	0: NVR1 错误中断状态位。
		写 1 清 0。
		1: NVR0 错误中断状态位;
1	NVR0ERR	0: NVR0 错误中断状态位。
		写 1 清 0。
		1: 擦写完成中断状态位;
0	PRODONE	0: 擦写完成中断状态位。
		写 1 清 0。

5.4.3 EFC_OADRL/H EFLASH 烧录地址寄存器

D1H~D2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EFC_OADRL	EFLASH 烧录地址低位[7:0]							
EFC_OADRH		EFLASH 烧录地址高位[15:8]						
读/写		读/写						
复位值	1	1	1	1	1	1	1	1

5.4.4 EFC_ODATA EFLASH 烧录数据寄存器

D3H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EFC_ODATA		EFLASH 烧录数据[7:0]						
读/写		读/写						
复位值	1	1	1	1	1	1	1	1

5.4.5 EFC_OCTRL 电压输出寄存器

D4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EFC_OCTRL	VPPO_EN	PUMP_EN	PUN	4P_SEL<2	2:0>	-	PUMP_OK	PUMP_6O5V
读/写	读/写	读/写		读/写		-	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明							
世編写	12付亏								
		EFLASH IAP 编程启动控制信号:							
		0: 关闭(硬件自动清 0);							
7	VPPO_EN	1: 启动 EFLA	ASH 编程	(软件写1启	动 EFLAS	H IAP 编程,硬件完成 IAP			
		后清 0)。							
		此 bit 置位后	,CPU 将	处在 Idle 状态	,待 IAP	完成后恢复。			
		PUMP 模块使	能控制位						
6	PUMP_EN	0: 关闭内部	PUMP 功能	能;					
		1:打开内部 PUMP 功能。							
		Pump 输出电压选择控制位:							
	PUMP_SEL<2:0>	PUMP_SEL	VPP(V)	PUMP_SEL	VPP(V)				
		000	6.5	100	7.5				
5-3		001	6.75	101	7.75				
		010	7.0	110	8				
		011	7.25	111	8.25				
		建议实际 IAP 编程设置 PUMP_SEL<2:0> = 001, 6.75V。							
2	-	-							
		VPP 输出电压标志 1:							
1	PUMP_OK	0: VPP OUT 电压低于 PUMP_SEL 设定电压;							
		1: VPP OUT	- 1: VPP OUT 电压高于 PUMP_SEL 设定电压。						
		VPP 输出电压标志 2:							
0 PUMP_6O5V 1: VPP OUT 电压高于 6.5V;									
		0: VPP OUT	电压低于	6.5V。					
	•	•							

5.4.6 OINTEN 中断使能寄存器

A2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CINITENI		NVRCERR	VDDLOWE	WPOGERR	BOOTERR	NVR1ERR	NVR0ERR	PRODONE
OINTEN -	EN	N	EN	EN	EN	EN	EN	
读/写	读	读/写						
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	ı	-
6	NVRCERREN	1: NVRC 错误中断使能;
0	INVICERREIN	0: NVRC 错误中断禁止。
5	VDDLOWEN	1: LVD 低电压中断使能;
5	VDDLOWEN	0: LVD 低电压中断禁止。
4	WPOGERREN	1: 操作错误中断使能;
4	WPOGERREN	0: 操作错误中断禁止。
3	BOOTERREN	1: BOOT 错误中断使能;
	BOOTERREN	0: BOOT 错误中断禁止。
2	NVR1ERREN	1: NVR1 错误中断使能;
	INVRIERREIN	0: NVR1 错误中断禁止。
1	NVR0ERREN	1: NVR0 错误中断使能;
I	INVRUERREIN	0: NVR0 错误中断禁止。
0	DDODONEEN	1: 擦写完成中断使能;
U	PRODONEEN	0: 擦写完成中断禁止。

5.5 软件流程

5.5.1 Read 操作

EFLASH 上电稳定后可以执行读操作。读操作注意配置读等待时间 RD_WAIT。

5.5.2 Write 操作

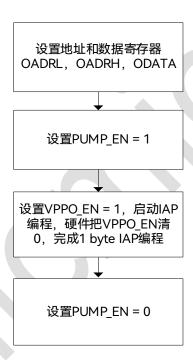


图 5-1: 写操作流程

5.5.3 Erase 操作

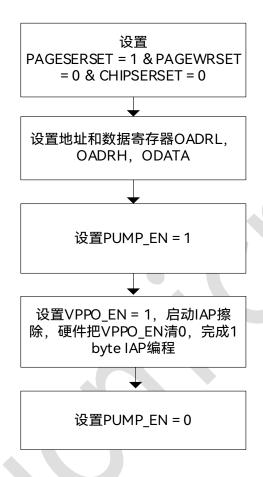


图 5-2: 擦除操作流程

5.5.4 ChipErase 操作

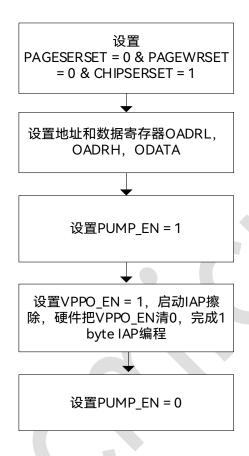


图 5-3: 擦除操作流程

UM800YA 用户手册 PWM(脉宽调制模块)

6 PWM (脉宽调制模块)

6.1 特性

- 11 路 16 位精度 PWM 模块。
- 提供每个 PWM 周期溢出中断。
- 输出极性选择。

6.2 功能描述

图 6-1: PWM 输出范例

图 6-2: PWM 输出周期或占空比改变范例

UM800YA 用户手册 PWM (脉宽调制模块)

PWM 输出时序 6.3

PWMxS 条件 PWMx 端口输出状态 输出方波、先输出 PWMxD 个时钟周期高电平、然后输 PWMxP > PWMxD 出 PWMxP-PWMxD 个时钟周期低电平。 0 PWMxP ≤ PWMxD 高电平 PWMxD = 0. PWMxP = 0高电平 PWMxD = 0, $PWMxP \neq 0$ 低电平 输出方波, 先输出 PWMxD 个时钟周期低电平, 然后输 PWMxP > PWMxD 出 PWMxP-PWMxD 个时钟周期高电平。 1 PWMxP ≤ PWMxD 低电平 PWMxD = 0, PWMxP = 0低电平 PWMxD = 0, $PWMxP \neq 0$

表 6-1: 输出时序 (PWMxSS=1)

注意:

- PWMxEN 位控制 PWMx 模块开关。
- PWMxSS(x = 0-2)位可以选择端口是作为 I/O 端口还是 PWM 输出端口,PWMxSS =1,但 PWMxEN=0,则相应端口处于输入状态。

高电平

- IENO 寄存器中的 EPWM 位和 PWMxCON 寄存器中的 PWMxIE 位会共同控制 PWMx 中断。
- 3路 PWM 模块共用中断向量。
- 当 PWMENx=1, PWMxSS=0 时, PWMx 模块输出关闭, 此时 PWM 模块可用作 16 位定时器。 如果 PWM 中断被使能且 PWMxIE=1,每个 PWM 周期会同样触发中断。

寄存器描述 6.4

地址	名称	描述
СВН	PWM0_PL	PWM0数据寄存器
ССН	PWM0_PH	PWM0数据寄存器
CDH	PWM1_PL	PWM1数据寄存器
CEH	PWM1_PH	PWM1数据寄存器
C1H	PWM2_PL	PWM2数据寄存器

表 6-2: 寄存器列表

UM800YA 用户手册 PWM(脉宽调制模块)

C2H	PWM2_PH	PWM2数据寄存器
СЗН	PWM0_DL	PWM0占空比控制寄存器
C4H	PWM0_DH	PWM0占空比控制寄存器
C5H	PWM1_DL	PWM1占空比控制寄存器
C6H	PWM1_DH	PWM1占空比控制寄存器
CFH	PWM2_DL	PWM2占空比控制寄存器
C7H	PWM2_DH	PWM2占空比控制寄存器
C8H	PWM0_CON	PWM0设置寄存器
С9Н	PWM1_CON	PWM1设置寄存器
CAH	PWM2_CON	PWM2设置寄存器

6.4.1 PWMx_PL/H PWMx 数据寄存器

		Bit7	Bit6	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 B					Bit0			
PWM0_PL((CBH)		PWM0P[7:0]									
PWM0_PH	(CCH)		PWM0P[15:8]									
PWM1_PL((CDH)				PWM	1P[7:0]						
PWM1_PH	(CEH)				PWM ²	1P[15:8]						
PWM2_PL	(C1H)		PWM2P[7:0]									
PWM2_PH	(C2H)				PWM2	2P[15:8]						
读/写		读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写			
复位值	Ī	0	0	0	0	0	0	0	0			
位编号	1	位符号	说明	说明								
15-0		MxP[15:0] 0, 1, 2)	PWMx 数据寄存器									

注意:

- 修改寄存器 PWMxPH 将使得 PWMx 的输出在下一个周期生效。
- 如果用户需要修改 PWM 周期,先修改 PWMxPL,再修改 PWMxPH。

6.4.2 PWMx_DL/H PWMx 占空比控制寄存器

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
PWM0_DL(C3H)		PWM0D[7:0]								
PWM0_DH(C4H)		PWM0D[15:8]								

UM800YA 用户手册 PWM(脉宽调制模块)

PWM1_DL	(C5H)	PWM1D[7:0]										
PWM1_DH	(C6H)		PWM1D[15:8]									
PWM2_DL0	(CFH)				PWM2	D[7:0]						
PWM2_DH	(C7H)				PWM2E)[15:8]						
读/写		读/写 读/写 读/写 读/写 读/写 读/写 读/写					读/写					
复位值	Ī	0	0	0	0	0	0	0	0			
位编号	4	立符号	符号 说明									
15-0	PWN	lxD[15:0] PWMx占空比控制,控制PWM0波形占空比的输出时间。										
	(x=	0, 1, 2)	详细 F	WM 输出	时序,见 <u>P</u> '	WM 输出I	<u>讨序</u> 章节。					

注意:

- 修改寄存器 PWMxDH 将使得 PWMx 的输出在下一个周期生效。
- 如果用户需要修改 PWM 占空比,先修改 PWMxDL,再修改 PWMxDH。

6.4.3 PWMx_CON PWMx 设置寄存器

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM0_CON(C8H)	PWM0EN	PWM0S	-		-	PWM0IE	PWM0IF	PWM0SS
PWM1_CON(C9H)	PWM1EN	PWM1S	-	-	-	PWM1IE	PWM1IF	PWM1SS
PWM2_CON(CAH)	PWM2EN	PWM2S	_	-	-	PWM2IE	PWM2IF	PWM2SS
读/写	读/写	读/写	_	-	-	读/写	读/写	读/写
复位值	0	0	-	-	-	0	0	0

位编号	位符号	说明
		PWMx 使能:
7	PWMxEN	0: 禁止 PWMx 模块;
		1:使能 PWMx 模块。
		PWMx 输出模式:
6	PWMxS	0:PWMx 占空比期间输出高电平,占空比溢出后输出低电平;
		1:PWMx 占空比期间输出低电平,占空比溢出后输出高电平。
5-3	-	-
		PWMx 中断使能控制位:
2	PWMxIE	0: 禁止 PWMx 中断;
2	F VVI*IXIE	1:允许 PWMx 中断。
		3 路 PWM 共用中断入口地址。

UM800YA 用户手册 PWM(脉宽调制模块)

		PWMx 中断标志位:					
1	PWMxIF	0:PWM 周期计数器没有溢出;					
		1:PWMx 周期计数器溢出,硬件置位,软件写 1 无效,写 0 清 0。					
		PWMx 引脚输出控制位:					
		0:禁止 P1_0 为 PWM0 输出。P1_1 为 PWM1 输出,P1_2 为 PWM2					
		输出,用作 I/O 功能。					
		1:允许 P1_0 为 PWM0 输出。P1_1 为 PWM1 输出,P1_2 为 PWM2					
0	DWM	输出。					
0	PWMxSS	注意:					
		● PWM0_OUT 为 P1_0,PWM1_OUT 为 P1_1,PWM2_OUT 为					
		P1_2 时设置此位。					
		● PWM0_OUT 为 P1_1/P2_0,PWM1_OUT 为 P1_2/P1_5,					
		PWM2_OUT 为 P1_3 时不需要设置此位。					

6.5 软件操作流程

- 1. 配置 PWM 输出引脚,可配置该位 PWMxSS 或者使能相应的引脚复用。
- 2. 写 PWMx_PL/PH,设置 PWM 的周期。
- 3. 写 PWMx_DL/DH,设置 PWM 的占空比。
- 4. 写 PWMxS 位,配置 PWM 输出极性。
- 5. 若使用中断,先写 EAL 位和 EPWM 位,再写 PWMxIE 寄存器,使能 PWM 中断。
- 6. 最后写 PWMxEN 位,使能 PWM 模块。

7 GPIO(I/O 端口)

7.1 主要特性

- 最多支持 17 个可编程双向 I/O 端口。
- 全部 IO 支持中断功能,双沿触发。
- 内建上拉电阻。
- I/O 口可与其他功能共用。

7.2 端口模块图

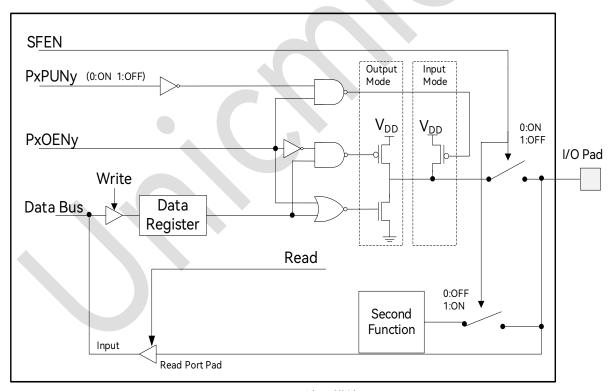


图 7-1: 端口模块图

注意:

- 对配置成输入端口的读操作即为直接读取引脚电平。
- 对配置成输出端口的读操作同样也是读取引脚电平。
- 即使是将 I/O 口配置为其他复用功能,对端口的写操作都是针对端口数据寄存器。

7.3 端口中断

全部端口都支持中断功能。如果使能中断,上升沿或下降沿均会触发中断,全部端口中断共用INTO中断入口。通过写 POAL/POAH/P1AL/P1AH/P2AL/P2AH 寄存器来配置 IO 触发中断的边沿。

PxIEN 寄存器控制所有 IO 口中断使能的打开与关闭,如果某一端口的中断功能被打开,那么当MCU 检测到引脚上出现上升沿或者下降沿则产生外部中断,并且置相应的 PxIRQ 标志位为 1。用户程序可以在外部中断 0 的服务程序内查询是哪个引脚产生了中断标志位。

如果端口中断被使能,那么当 MCU 进入掉电模式时,端口电平的变化可以中断唤醒 MCU。

7.4 寄存器描述

表 7-1: 寄存器配置

地址	名称	描述
C010H	P00_CFG	端口 P0_0 功能配置寄存器
C011H	P01_CFG	端口 P0_1 功能配置寄存器
C013H	P03_CFG	端口 P0_3 功能配置寄存器
C014H	P04_CFG	端口 P0_4 功能配置寄存器
C018H	P10_CFG	端口 P1_0 功能配置寄存器
C019H	P11_CFG	端口 P1_1 功能配置寄存器
C01AH	P12_CFG	端口 P1_2 功能配置寄存器
C01BH	P13_CFG	端口 P1_3 功能配置寄存器
C01CH	P14_CFG	端口 P1_4 功能配置寄存器
C01DH	P15_CFG	端口 P1_5 功能配置寄存器
C020H	P20_CFG	端口 P2_0 功能配置寄存器
C022H	P22_CFG	端口 P2_2 功能配置寄存器
C023H	P23_CFG	端口 P2_3 功能配置寄存器
C025H	P25_CFG	端口 P2_5 功能配置寄存器
C026H	P26_CFG	端口 P2_6 功能配置寄存器
C027H	P27_CFG	端口 P2_7 功能配置寄存器
C000H	P0_IE	P0 IO 输入控制寄存器
C001H	P1_IE	P1 IO 输入控制寄存器
C002H	P2_IE	P2 IO 输入控制寄存器
C005H	P0_SR	P0 IO 速度控制寄存器

С006Н	P1_SR	P1 IO 速度控制寄存器
C007H	P2_SR	P2 IO 速度控制寄存器

7.4.1 P00_CFG

C010H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
P00_CFG	-	-	P00_SEL									
读/写	读	读	读	读	读		读/写					
复位值	0	0	0	0	0		0					
位编号	位符号	说明										
7-3	-	_										
2-0		000: P0_0 001: UART 010: SPI_C: 011: LPOU 100: GTIMI 101: GTIMI	T0 ER1_CHN									
		110: -										

7.4.2 P01_CFG

C011H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
P01_CFG	- \	P01_SEL										
读/写	读	读	读 读 读 读/写									
复位值	0	0	0	0	0		0					
位编号	位符号	说明	紀明									
7-3	_	-										
2-0		000: P0_1 001: UART 010: SPI_SG 011: I2C_S 100: LPOU 101: GTIMI 110: GTIMI	CK DA T1 ER0_BKE									

7.4.3 P03_CFG

C013H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2 Bit1 Bit0		Bit0		
P03_CFG	-	-	-	-	-		P03_SEL			
读/写	读	读	读	读	读		读/写			
复位值	0	0	0	0	0		0x01			
位编号	位符号	说明	·明							
7-3	-	-								
2-0		000: P0_3 001: CLKO 010: UART 011: UART 100: SPI_C: 101: LPOU 110: GTIMI 111: -	2_TX 3_RX SN T0							

7.4.4 P04_CFG

C014H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P04_CFG	-	-		-	-	P04_SEL				
读/写	读	读	读	读	读		读/写			
复位值	0	0	0	0	0		0x03			
位编号	位符号	说明	明							
7-3	_	_								
2-0		010: SPI_S0 011: I2C_S 100: LPOU 101: GTIMI	001: UART2_RX 010: SPI_SCK 011: I2C_SDA 100: LPOUT1 101: GTIMER1_BKE 110: GTIMER2_CHN							

7.4.5 P10_CFG

C018H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2 Bit1 Bit0		Bit0		
P10_CFG	-	-	-	-	-	P10_SEL				
读/写	读	读	读	读	读		读/写			
复位值	0	0	0	0	0		0x04			
位编号	位符号	说明	明							
7-3	-	-								
2-0		000: P1_0 001: UART 010: UART 011: PWM0 100: I2C_S 101: LP0_II 110: GTIMI 111: UART	2_TX) CL N ER2_CH							

7.4.6 P11_CFG

C019H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P11_CFG	-	-		-		P11_SEL				
读/写	读	读	读	读		读	/写			
复位值	0	0	0	0		()			
		12 ft D 14 nD								
位编号	位符号	说明	治明							
7-3	-	_								
3-0	P11_SEL	0000: P1_1 0001: UAR 0010: UAR 0011: PWN 0100: SPI_I 0101: LP0_ 0110: GTIN 0111: PWN 1000~1110: 1111: UAR	T1_TX T3_RX 11 MISO TRG 1ER1_CHN 10							

7.4.7 P12_CFG

C01AH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2 Bit1 Bit0					
P12_CFG	-	-	-	-	-		P12_SEL				
读/写	读	读	读	读	读		读/写				
复位值	0	0	0	0	0		0				
位编号	位符号	说明	明								
7-3	-	_									
2-0	P12_SEL	000: P1_2 001: UART 010: UART 011: PWM2 100: LP0_C 101: GTIMI 110: PWM2	3_TX 2 :AP ER1_CH								

7.4.8 P13_CFG

C01BH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P13_CFG	-	1	1	-	-		P13_SEL			
读/写	读	读	读	读	读		读/写			
复位值	0	0	0	0	0		0			
位编号	位符号	说明	明							
7-3	_	_								
2-0		000: P1_3 001: UART 010: UART 011: SPI_SG 100: I2C_SG 101: LP0_II 110: GTIMG	2_RX CK DA N ER0_CH							

7.4.9 P14_CFG

C01CH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P14_CFG	-	-	-	-	-	P14_SEL				
读/写	读	读	读	读	读		读/写			
复位值	0	0	0	0	0		0x01			
位编号	位符号	说明	治明							
7-3	-	_								
2-0	P14_SEL	000: P1_4 001: UART 010: PWM: 011: SPI_M 100: LP0_T 101: GTIMI 110: GTIMI 111: -	2 OSI RG ERO_CHN							

7.4.10 P15_CFG

C01DH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P15_CFG	_	-	-	-	_	P15_SEL				
读/写		读	读	 读	 读					
复位值	0	0	0	0	0		0x01			
位编号	位符号	说明	明							
7-3	_	-								
2-0		000: P1_5 001: UART 010: PWM ¹ 011: SPI_M 100: GTIMI 101: GTIMI 110: GTIMI	1 ISO ERO_CH ER1_BKE ER2_CH							

7.4.11 P20_CFG

C020H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2 Bit1 Bit0				
P20_CFG	-	-	-	-	-		P20_SEL			
读/写	读	读	读	读	读		读/写			
复位值	0	0	0	0	0		0			
 位编号	位符号	说明	AB							
1보개배 등	1419 2	מריזמ	归							
7-3	-	_								
2-0		010: PWM0 011: SPI_M	01: UART3_RX							
		1101. EFOO 110: GTIMI								

7.4.12 P22_CFG

C022H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2 Bit1 Bit0				
P22_CFG	-	-	-	-	-	P22_SEL				
读/写	读	读	读	读	读		读/写			
复位值	0	0	0	0	0		0			
位编号	位符号	说明	Я							
7-3	_	-								
2-0		000: P2_2 001: UART 010: SPI_C 011: SPI_M 100: I2C_S 101: GTIMI 110: GTIMI	SN IISO DA ERO_BKE ER2_CHN							

7.4.13 P23_CFG

C023H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2 Bit1 Bit0				
P23_CFG	-	-	-	-	-	P23_SEL				
读/写	读	读	读	读	读		读/写			
复位值	0	0	0	0	0		0			
位编号	位符号	说明	明							
7-3	_	_								
2-0	P23_SEL	000: P2_3 001: UART 010: SPI_S0 011: SPI_M 100: LP0_C 101: GTIMI 110: GTIMI 111: -	CK OSI :AP ERO_CHN							

7.4.14 P25_CFG

C025H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P25_CFG	_	-		7 -	-	P25_SEL				
	读	读	读	读						
复位值	0	0	0	0	0		0x06			
位编号	位符号	说明	明							
7-3	-	-								
2-0		010: SPI_C: 011: I2C_S 100: GTIMI 101: GTIMI	000: P2_5 001: UART3_TX 010: SPI_CSN 011: I2C_SCL 100: GTIMER0_CH 101: GTIMER0_BKE 110: BUZZER_OUT							

7.4.15 P26_CFG

C026H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P26_CFG	-	-	P26_SEL							
读/写	读	读	读	读	读		读/写			
复位值	0	0	0	0	0		0x01			
445	<i>₩</i> ** □	\\ ==								
位编号	位符号	说明	明							
7-3	-	_								
		000: P2_6								
		001: UART	0_TX							
		010: UART	2_TX							
2-0	P26_SEL	011: SPI_M	ISO							
		100: LPOU	T1							
		101: GTIMI	ER1_CH							
		110: GTIMI	ER2_CH							

7.4.16 P27_CFG

C027H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
P27_CFG	-	P27_SEL									
读/写	读	读	读 读 读 读/写								
复位值	0	0	0	0	0		0x01				
位编号	位符号	说明	明								
7-3	_	-									
2-0		010: UART 011: SPI_M 100: I2C_S 101: GTIMI	001: UART0_RX 010: UART2_RX 011: SPI_MOSI 100: I2C_SCL 101: GTIMER1_CHN 110: GTIMER2_BKE								

7.4.17 P0_IE

C000H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P0_IE	-	-	-	P0_4_IE	P0_3_IE	P0_2_IE	P0_1_IE	P0_0_IE		
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	0	0	0	0	0		
位编号	位符号	说明								
7-5	-	-								
		P0_4 IO 输 <i>入</i>	控制位:							
4	P0_4_IE	0: P0_4 禁」	上输入;							
		1: P0_4 开系	1: P0_4 开启输入。							
		P0_3 IO 输 <i>入</i>	、控制位:							
3	P0_3_IE		D: P0_3 禁止输入;							
		1: P0_3 开机	自输入。							
		P0_2 IO 输 <i>入</i>	、控制位:							
2	P0_2_IE	0: P0_2 禁」								
		1: P0_2 开机	自输入。							
		P0_1 IO 输 <i>入</i>								
1	P0_1_IE	0: P0_1 禁」								
		1: P0_1 开机	言输入。							
		P0_0 IO 输 <i>入</i>								
0	P0_0_IE	0: P0_0 禁」								
		1: P0_0 开机	言输入。							

7.4.18 P1_IE

C001H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P1_IE	1	-	P1_5_IE	P1_4_IE	P1_3_IE	P1_2_IE	P1_1_IE	P1_0_IE		
读/写	读	读	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	0	0	1	0	1		
位编号	位符号	说明	说明							
7-6	-	_								
		P1_5 IO 输入控制位:								
5	P1_5_IE	0: P1_5 禁止输入;								
		1: P1_5 开/	1: P1_5 开启输入。							

		P1_4 IO 输入控制位:
4	P1_4_IE	0: P1_4 禁止输入;
		1: P1_4 开启输入。
		P1_3 IO 输入控制位:
3	P1_3_IE	0: P1_3 禁止输入;
		1: P1_3 开启输入。
		P1_2 IO 输入控制位:
2	P1_2_IE	0: P1_2 禁止输入;
		1: P1_2 开启输入。
		P1_1 IO 输入控制位:
1	P1_1_IE	0: P1_1 禁止输入;
		1: P1_1 开启输入。
		P1_0 IO 输入控制位:
0	P1_0_IE	0: P1_0 禁止输入;
		1: P1_0 开启输入。

7.4.19 P2_IE

C002H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P2_IE	P2_7_IE	P2_6_IE	P2_5_IE	-	P2_3_IE	P2_2_IE	-	P2_0_IE		
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读/写		
复位值	1	0	0	0	0	0	0	0		
	<i>\-</i>	у <u>ж</u> пп								
位编号	位符号	说明								
		P2_7 IO 输入	、控制位:							
7	P2_7_IE	0: P2_7 禁」	上输入;							
		1: P2_7 开系	I:P2_7 开启输入。							
		P2_6 IO 输入	、控制位:							
6	P2_6_IE	0: P2_6 禁」	- 0: P2_6 禁止输入;							
		1: P2_6 开系	自输入。							
		P2_5 IO 输入	、控制位:							
5	P2_5_IE	0: P2_5 禁」	上输入;							
		1: P2_5 开系	1: P2_5 开启输入。							
4	_	_	-							
		P2_3 IO 输入控制位:								
3	P2_3_IE	- 0: P2_3 禁止输入;								
		1: P2_3 开系	自输入。							

2	P2_2_IE	P2_2 IO 输入控制位: 0: P2_2 禁止输入; 1: P2_2 开启输入。
1	-	-
0	P2_0_IE	P2_0 IO 输入控制位: 0: P2_0 禁止输入; 1: P2_0 开启输入。

7.4.20 P0_SR

C005H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
P0_SR	-	-	-	P0_4_SR	P0_3_SR	P0_2_SR	P0_1_SR	P0_0_SR		
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	1	1	1	1	1		
位编号	位符号	说明								
7-5	-	_								
4	P0_4_SR	P0_4 IO 速度 0: P0_4 快↓ 1: P0_4 慢↓	吏;							
3	P0_3_SR	0: P0_3 快i	P0_3 IO 速度控制位: D: P0_3 快速; I: P0_3 慢速。							
2	P0_2_SR	0: P0_2 快i	P0_2 IO 速度控制位: 0: P0_2 快速; 1: P0_2 慢速。							
1	P0_1_SR	P0_1 IO 速度控制位: 0: P0_1 快速; 1: P0_1 慢速。								
0		P0_0 IO 速度 0: P0_0 快说 1: P0_0 慢说	速;							

7.4.21 P1_SR

C006H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
P1_SR	-	-	P1_5_SR	P1_4_SR	P1_3_SR	P1_2_SR	P1_1_SR	P1_0_SR			
读/写	读	读	读/写	读/写	读/写	读/写	读/写	读/写			
复位值	0	0	0 1 1 1 1 1 1								
位编号	位符号	说明	·····································								
7-6	-	-									
5	P1_5_SR	P1_5 IO 速度 0: P1_5 快; 1: P1_5 慢;	速;								
4	P1_4_SR	 0: P1_4 快i	P1_4 IO 速度控制位:): P1_4 快速; : P1_4 慢速。								
3	P1_3_SR	_	P1_3 IO 速度控制位: D: P1_3 快速; I: P1 3 慢速。								
2	P1_2_SR	0: P1_2 快i	P1_2 IO 速度控制位: D: P1_2 快速; 1: P1_2 慢速。								
1	P1_1_SR	P1_1 IO 速度控制位: 0: P1_1 快速; 1: P1_1 慢速。									
0	P1_0_SR	0: P1_0 快i	P1_0 IO 速度控制位: D: P1_0 快速; I: P1_0 慢速。								

7.4.22 P2_SR

C007H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
P2_SR	P2_7_SR	P2_6_SR	P2_5_SR	-	P2_3_SR	P2_2_SR	-	P2_0_SR			
读/写	读/写	读/写	读/写	读	读/写	读/写	读	读/写			
复位值	1	1									
位编号	位符号	说明									
7		P2_7 IO 速度 0: P2_7 快i 1: P2_7 慢i	速;								
6	P2_6_SR	_	P2_6 IO 速度控制位: P2_6 快速;								
5	P2_5_SR	_ 0: P2_5 快i	P2_5 IO 速度控制位: D: P2_5 快速; 1: P2_5 慢速。								
4	-	_									
3		0: P2_3 快ì	P2_3 IO 速度控制位: 0: P2_3 快速; 1: P2_3 慢速。								
2	P2_2_SR	P2_2 IO 速度控制位: 0: P2_2 快速; 1: P2_2 慢速。									
1	_	_	-								
0		P2_0 IO 速度控制位: D: P2_0 快速; 1: P2_0 慢速。									

UM800YA 用户手册 BEEPER(蜂鸣器)

8 BEEPER (蜂鸣器)

芯片内建蜂鸣器信号发生器,可硬件自动输出 1、2、4kHz 方波。

8.1 寄存器描述

8.1.1 BEEPCTR

86H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
BEEPCTR	UART3CEN	UART3RSTEN	-	BEEPEN	-	BEEPCOLSET	BEEPSE	L[1: 0]		
读/写	读/写	读/写	读/写 读 读/写 读/写 读/写							
复位值	1	1	0	0	0	0	0	0		
位编号	位符号	说明								
7	UART3CEN	1: UART3 时钟	1: UART3 时钟打开;							
/	UARTSCEN	0: UART3 时钟	禁止。							
6	UART3RSTEN	1: UART3 复位	1: UART3 复位释放;							
0	UARISKSIEN	0: UART3 复位	0: UART3 复位。							
5	-									
		BEEP 使能控制位:								
4	BEEPEN	0: 关闭 BEEP f	莫块;							
4	BEEPEIN	1: 打开 BEEP t	莫块。							
		注: BEEP 默认	为 P2.5	输出。						
3	-	-								
		BEEP 极性控制:	•							
2	BEEPCOLSET	0: BEEP 输出黑	状认状态	下为低电平	" ;					
		1: BEEP 输出默认状态为高电平。								
		BEEP 输出频率控制:								
1-0	BEEPSEL	00/11: 1kHz								
1-0	DLLFJLL	01: 2kHz								
		10: 4kHz								

9 UARTO/1 (增强型串口)

9.1 特性

- UART0/1 均自带波特率发生器。
- UARTO 有四种工作模式。
- UART1 有两种工作模式。

两个串行口均由一个移位寄存器,一个串行控制寄存器,一个波特率发生器以及两个独立的数据缓冲器(分别用于发送和接收数据)组成。两个数据缓冲器统称为 SOBUF (S1BUF),其共用地址 99H (9CH)。向 SOBUF 或 S1BUF 写数据启动串口数据发送,读 SOBUF 或 S1BUF 返回缓冲器已经接收到的数据。

串行口在接收数据时,数据先进入移位寄存器,完成一帧的接收后将数据移入 SOBUF (S1BUF), 并立即接收下一帧数据,主机应保证该帧数据接收完成之前将 SOBUF (S1BUF) 缓冲器中数据取走, 否则将导致前一帧数据被该帧数据覆盖而导致数据丢失。

9.2 UARTO 工作模式

UARTO 有 4 种工作方式。进行通信之前用户须初始化相关寄存器,并选择合适的工作方式和波特率。用户可以通过设置 SM0/SM1 来选择不同的工作方式。

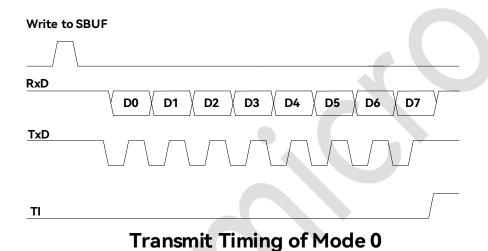
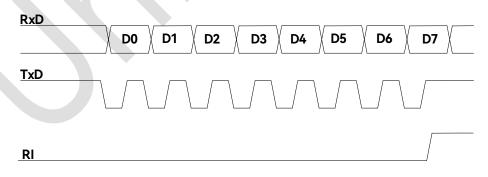

SM₀ SM1 Mode 描述 **Baud Rate** 0 0 0 Shift register SYSCLK/12 1 1 0 8-bit UART 可配置 1 0 2 9-bit UART SYSCLK/16 3 1 1 9-bit UART 可配置

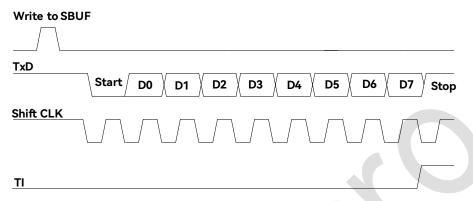
表 9-1: UARTO 工作方式列表


● 方式 0: 同步, 半双工通讯:

方式 0 支持与外部设备的同步通信。在 RX 引脚上收发串行数据,TX 引脚发送移位时钟。在这个方式中,每帧收发 8 位,低位先接收或发送。

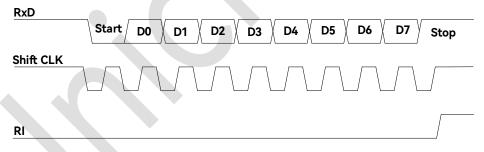
任何将 SBUF 作为目标寄存器的写操作都会启动发送,下一个系统时钟 TX 控制块开始发送。数据转换发生在移位时钟下降沿,移位寄存器内容逐次从左往右移位,空位置 0。发送完成后,TX 控制模块停止发送操作,然后在下一个系统时钟的上升沿将 TI 置位。

REN 置 1 和 RI 清 0 初始化接收。在移位时钟的上升沿锁存数据,接收转换寄存器的内容逐次向左移位。当所有的 8 位数据都移到移位寄存器后,RX 控制块停止接收,下一个系统时钟上升沿 RI 置位,直到软件清零才允许下一次接收。



Receive Timing of Mode 0

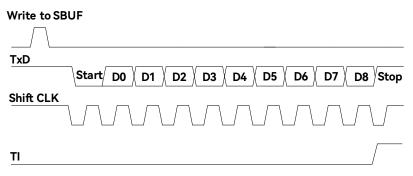
● 方式 1:8位 UART,可变波特率,异步全双工。


方式 1 提供 10 位全双工异步通信, 10 位由一个起始位(逻辑 0), 8 个数据位(低位为第一位), 一个停止位(逻辑 1)组成。在接收时, 8 个数据位保存在 SBUF 中, 停止位保存在 RB8 中。

任何将 SBUF 作为目标寄存器的写操作都会启动发送,起始位首先在 TX 引脚上移出,然后是 8 位数据位。在发送移位寄存器中的所有 8 位数据位都发送完后,停止位在 TX 引脚上移出,在停止位发出的同时 TI 标志置位发出中断请求。

Transmit Timing of Mode 1

只有 REN 置位时才允许接收。当 RX 引脚检测到下降沿时串行口开始接收串行数据。若起始位有效,则移入移位寄存器,并接着移入其他位到移位寄存器。8 个数据位和 1 个停止位移入之后,移位寄存器的内容被分别装入 SBUF 和 RB8 中,随后 RI 被置位。这时,接收器继续探测 RX 的下一个下降沿。用户需要软件清零 RI,然后才能再次接收。



Receive Timing of Mode 1

● 方式 2: 9 位 UART, 固定波特率, 异步全双工。

方式 2 提供 11 位全双工异步通信,波特率固定为系统时钟的 1/16。一帧由一个起始位(逻辑 0),8 个数据位(低位为第一位),一个可编程第 9 位和一个停止位(逻辑 1)组成。方式 2 和方式 3 支持多机通信功能。

任何将 SBUF 作为目标寄存器的写操作都会启动发送,同时将 TB8 载入发送移位寄存器中的第 9 位。起始位首先在 TX 引脚移出,然后是 9 位数据位。在所有数据发送完成后,停止位在 TX 引脚上移出,在停止位开始发送时 TI 标志置位发出中断请求。

Transmit Timing of Mode 2

只有 REN 置位时才允许接收。当 RX 引脚检测到下降沿时串行口开始接收串行数据。若起始位有效,则移入移位寄存器,并接着移入其他位到移位寄存器。9 个数据位和 1 个停止位移入之后,移位寄存器的内容被分别装入 SBUF 和 RB8 中,随后 RI 被置位。这时,接收器继续探测 RX 的下一个下降沿。用户需要软件清零 RI,然后才能再次接收。

Receive Timing of Mode 2

● 方式 3:9位 UART,可变波特率,异步全双工。

方式 3 使用方式 2 的传输协议以及方式 1 的波特率产生方式。

注意: 串口 IO 需在 PxPUN 寄存器中使能对应 IO 的内部上拉,否则 RX 脚为浮空状态,容易受干扰。

9.3 UART1 工作模式

SMMode描述Baud Rate0A9-bit UART可配置1B8-bit UART可配置

表 9-2: UART1 工作方式列表

UART1 的方式 A 和方式 B 分别参考 UART0 的方式 3 和方式 1。

9.4 多机通讯

UARTO 的方式 2 和方式 3 以及 UART1 的方式 A 具有多机通讯功能。在采用多机通讯系统时,当主机要发送一数据块给数个从机中的一个时,先发送一个地址字节,以寻址目标从机。地址字节与数据字节可用第 9 位数据位来区别,地址字节的第 9 位为 1,数据字节的第 9 位为 0。接收方根据第 9 位信息判断是否接收,多机通讯过程如下:

- 设置为主机通信发送流程如下:
 - 1. 设置为 9 bit Mode, 发送接收方地址, 且置 TB8 = 1。
 - 2. 根据自定义的协议发送数据, 且置 TB8 = 0。
- 设置为主机通信接收流程如下:
 - 1. 设置 SM2=0 (无条件接收全部数据)。
 - 2. 主机根据自定义协议解析数据。
- 设置为从机通信接收流程如下:
 - 1. 置从机的 SM2=1, 处于只接收地址帧状态, 此时只会接收第 9bit 为 1 的地址数据。
 - 2. 当接收到数据时,软件判断是否与本机设定的串口地址匹配。
 - 3. 所有从机接收到地址帧后,各自将接收的地址与本机地址比较:
 - 若匹配即为目标从机,清除 SM2=0,准备接收主机即将发送的数据帧,接收完毕后再次置 SM2=1。
 - 若不匹配,保持 SM2=1,忽略接下来的所有数据帧,不产生中断请求,直到接收到地址帧再次进行比较确认。

9.5 UART0 寄存器描述

表 9-3: 寄存器列表

地址	名称	描述
98H	UART0_S0CON	中断寄存器
AAH	UART0_S0RELL	波特率配置寄存器

ВАН	UARTO_SORELH (BAH)	波特率配置寄存器
99H	UART0_S0BUF	数据寄存器
9EH	UARTEN	使能控制寄存器

9.5.1 UARTO_SOCON 中断寄存器

98H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
UARTO_SOCO	N SM0	SM1	SM20	REN0	TB80	RB80	TI0	RI0				
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写				
复位值	0	0	0	0	0	0	0	0				
位编号	位符号	说明	说明									

位编号	位符号	说明											
7	SM0	UARTO	模式选	上择控制位:									
		SM0	SM1	T0MODE	描述	Baud Rate							
		0	0	0	Shift register	SYSCLK/12							
6	SM1	0	1	1	8-bit UART	可配置							
		1	0	2	9-bit UART	SYSCLK/16							
		1	1	3	9-bit UART	可配置							
		UARTO	UARTO 多机通讯使能控制位:										
5	SM20	0: 关闭	用多机道	通讯功能;									
		1: 使能	能多机 道	通讯功能只接	接收 RB80 = 1 的	9 位数据。							
		UARTO	接收允	论许使能控制	」位:								
4	REN0	0: 不分	论许串口	□ 0 接收;									
		1: 允许	中串口() 数据接收。									
3	TB80	UARTO	Mode	2,3第9位	立发送数据位。								
2	RB80	UARTO) Mode	2,3第9位	拉接收数据位。								
1	TIO	UARTO	发送中	型断标志位:									
1	110	当发送	数据完	成后,硬件	置位,必须由软	件清 0。							
0	RI0	UARTO	接收中	四断标志位:									
U	NIU	当完成	一次数	据接收,硬	件置位,必须由	软件清 0。							

9.5.2 UARTO_SOREL 波特率配置寄存器

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
UARTO_SORELL(AAH)	S0RELL.7	S0RELL.6	S0RELL.5	S0RELL.4	S0RELL.3	S0RELL.2	S0RELL.1	S0RELL.0
复位值	1	1	1	0	0	1	1	0

UARTO_SORE	LH(BAH)	-	-	-	-	ı	-	S0RELH.1	S0RELH.0	
复位的	<u> </u>		-	-	-	-	-	1	1	
读/写 读/写		读/写	读/写	读/写	读/写	读/写	读/写	读/写		
位编号	位	符号	说明							
7.0	CODE	-11[-7.0]	UART0 Mode1,3 波特率配置寄存器:							
7-0	SURE	ELL[7:0]	SORELH +SORELL 构成波特率设置 SOREL[9:0]							
1-0	S0RI	EH[1:0]	Baud Rate = $\frac{\text{SYSCK}}{16 \times (1024 - \text{SOREL})}$							

9.5.3 UARTO_S0BUF 数据寄存器

99H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
UARTO_SOBUF	S0BUF.7	S0BUF.6	S0BUF.5	S0BUF.4	S0BUF.3	S0BUF.2	S0BUF.1	S0BUF.0			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写			
复位值	0	0	0	0	0	0	0	0			
位编号	位符号	说明									
		UART0 数抗	居寄存器:								
7-0	7-0 S0BUF[7:0]读 S0BUF 返回 UART0 接收到的数据;										
	写 S0BUF 启动 UART0 数据发送。										

9.5.4 UARTEN 使能控制寄存器

9EH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
UARTEN	OUTSE	-	OUTEN	FLH24MOUTEN	1	ı	UART1EN	UART0EN				
读/写	读/写	读/写	读/写	读/写	读	读	读/写	读/写				
复位值	0	0	0	0	0	0	0	0				
位编号	位符号	说明	· 治明									
		11: XTH	H 输出;									
7.4	OUTSEL	10: 系统	的钟输出	;								
7-6	OUTSEL	01: RCI	_38K 时钟	输出;								
		00: RCI	00: RCH16M 时钟输出。									

		CLK 输出使能:
5	OUTEN	1: CLKOUT 输出使能;
5	OUTEN	0: CLKOUT 输出禁止。
		注:输出使能后,P0_3 作为 CLKOUT 管脚输出时钟信号。
4	FLH24MOUTE	N -
3-2	-	-
		UART1 使能控制位:
1	UART1EN	0: P1.4, P1.5 作为 GPIO 功能;
'	UARTIEN	1: P1.4, P1.5 作为 UART1 RX1, TX1 功能。
		注:P1_1,P1_0 作为 UART1 TX1,RX1 时不需设置此位。
		UART0 使能控制位:
0	LIADTOEN	0: P2.6, P2.7 作为 GPIO 功能;
	UART0EN	1: P2.6, P2.7 作为 UART0 TX0, RX0 功能。
		注:P1_3,P1_2 作为 UART0 TX0,RX0 时不需设置此位。

9.6 UART1 寄存器描述

表 9-4: 寄存器列表

地址	名称	描述
9BH	UART1_S1CON	中断寄存器
9DH	UART1_S1RELL	波特率配置寄存器
BBH	UART1_S1RELH	波特率配置寄存器
9CH	UART1_S1BUF	数据寄存器
9EH	UARTEN	使能控制寄存器

9.6.1 UART1_S1CON 中断寄存器

9BH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
UART1_S1CON	SM	-	SM21	REN1	TB81	RB81	TI1	RI1
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						

		UART	1 模式选	择控制寄存位:									
7	CNA	SM	Mode	描述	Baud Rate								
7	SM	0	Α	9-bit UART	可配置								
		1	B 8-bit UART		可配置								
6	-	_											
		UART	ART1 多机通讯使能控制位:										
5	SM21	0: 关	: 关闭多机通讯功能;										
		1: 使	: 使能多机通讯功能,只接收 RB81= 1 的 9 位数据。										
		UART	1接收允	许使能控制位:									
4	REN1	0: 不	允许串口] 1 接收;									
		1: 允	许串口 1	数据接收。									
3	TB81	UART	1 第 9 位	Z 发送数据位									
2	RB81	UART	1 第 9 位	ī接收数据位									
1	TI1	UART	1 发送中	断标志位:									
'	111	当发送	送数据完成	成后,硬件置位,	必须由软件清0。								
0	RI1	UART	1接收中	·断标志位:									
U	KII	当完成	戊一次数	据接收,硬件置位	7,必须由软件清()。							

9.6.2 UART1_S1REL 波特率配置寄存器

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
UART1_S1RELL(9DH)	S1RELL.7	S1RELL.6	S1RELL.5	S1RELL.4	S1RELL.3	S1RELL.2	S1RELL.1	S1RELL.0
复位值	1	1	1	0	0	1	1	0
UART1_S1RELH(BBH)	-	_	-	-	-	-	S1RELH.1	S1RELH.0
复位值	-	-	-	-	-	-	1	1
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7.0	C4DELL[7.0]	UART0 Mode 波特率配置寄存器:
7-0	STRELL[7:0]	S1RELH +S1RELL 构成波特率设置 S1REL[9:0]
1-0	S1REH[1:0]	Baud Rate = SYSCK 16×(1024-S1REL)
		Baud Rate = $\frac{16 \times (1024 - S1REL)}{16 \times (1024 - S1REL)}$

9.6.3 UART1_S1BUF 数据寄存器

9CH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
UART1_S1BUF	S1BUF.7	S1BUF.6	S1BUF.5	S1BUF.4	S1BUF.3	S1BUF.2	S1BUF.1	S1BUF.0	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	0	0	0	0	0	0	0	0	
位编号	位符号	说明							
		UART1 数技	居寄存器:						
7-0	S1BUF[7:0]	读 S1BUF :	支S1BUF 返回 UART1 接收到的数据;						
		写 S1BUF /	启动 UART	1 数据发送。	0				

9.6.4 UARTEN 使能控制寄存器

具体请参见"UARTEN 使能控制寄存器"章节。

9.7 波特率

• UART0 Mode1and3

Baud Rate =
$$\frac{\text{SYSCK}}{16 \times (1024 - \text{SOREL})}$$

UART1

Baud Rate =
$$\frac{\text{SYSCK}}{16 \times (1024 - \text{S1REL})}$$

SYSCLK 为 16M,常见波特率 SxREL 配置值以及实际误差如下表:

表 9-5: 波特率误差表

目标波特率	SxREL	实际波特率	误差
115200	1015	111111	3.5%
57600	1007	58824	-2.1%
38400	998	38462	-0.2%
19200	972	19231	-0.2%
9600	920	9615	-0.2%
4800	816	4808	-0.16%
2400	607	2398	0.08%

10 UART2/3 (通用异步串口收发器)

Universal Asynchronous Receiver/Transmitter 通用异步串口收发器(以下简称 UART)是使用非常广泛的串行通信接口,支持全双工通信。通用异步串口收发器是把存储器或处理器中并行传输的数据串行的发送到外设的 UART 接收端,或接收 UART 外设的串行数据并转换为并行数据提供给处理器。UART 支持与外部接口设备的串行通信。

10.1 主要特性

模块功能特点:

- 提供标准的异步通讯位(起始位、奇偶位和停止位):
 - ▶ 生成 1 位起始位。
 - ▶ 生成 1 位校验位(可设置奇校验或偶校验),或无校验位。
 - ▶ 生成 1 位停止位。
 - > 字节从低位到高位依次传输。
- 8 比特 4 级的接收 FIFO。
- 可编程波特率 (波特率可以根据参数 F/D 调整)。
- 支持数据通讯及错误处理中断:
 - ▶ 状态位的访问可采用查询或者中断两种方式。
 - ▶ FIFO 非空、半满、全满、溢出标志。
 - ▶ 奇偶校验错误标志。
- 具有起始位有效性检测功能。
- 2*8bits 波特率参数寄存器。
- 可支持 9600bps、19200bps、115200bps 等常见波特率的传输。

10.2 寄存器描述

UART2 寄存器基地址: 0xCD00; UART3 寄存器基地址: 0xCE00。

表 10-1: 寄存器列表

偏置	名称	描述
0x00	UART_ISR	UART中断状态寄存器
0x01	UART_IER	UART中断使能寄存器
0x02	UART_CR	UART控制寄存器
0x03	UART_TDR	UART发送数据寄存器
0x03	UART_RDR	UART接收数据寄存器
0x04	UART_BPR_L	UART波特率参数低位寄存器
0x05	UART_BPR_H	UART波特率参数高位寄存器

10.2.1 UART_ISR 中断状态寄存器

CD00H/CE00H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
UART_ISR	RS	V	FIFO_NE	FIFO_HF	FIFO_FU	FIFO_OV	TXEND	TRE			
读/写	读	i	读/写	读/写	读/写	读	读/写	读			
复位值	0		0	0	0	0	0	0			
位编号	位符	号	说明								
7-6	RS	V	保留								
			FIFO 非空标	志:							
5	FIFO	NE	FIFO_NE =0	则 FIFO 空;							
5		INE	IFO_NE =1 则 FIFO 非空。								
			当 FIFO 读空时,此位自动清 0。软件也可以清除此位,写 0 清除。								
		FIFO 半满标志:									
,	FIFO		FIFO_HF =0 则 FIFO 非半满;								
4	FIFO_	_HF	FIFO_HF =1 则 FIFO 半满。								
			当读取 FIFO	中数据,此位	自动清 0。	次件也可以	清除此位,写	30清除。			
			FIFO 全满标:	志:							
3	FIFO	ELL	FIFO_FU =0	则 FIFO 非全流	梼;						
3	FIFO_	_FU	FIFO_FU =1 则 FIFO 全满。								
			当读取 FIFO	中数据,此位	自动清 0。	次件也可以	清除此位,写	30清除。			
2	FIFO	0)/	Rx-FIFO 接收溢出错误:								
2	FIFO_OV	FIFO_OV =0 没有接收溢出错误发生;									

		FIFO_OV =1 发生了接收溢出错误。
		软件清除此位,写 0 清除。
		UART 发送完成标志:
1	TVEND	TXEND =0 表示发送没有完成;
'	TXEND	TXEND =1 发送完成。
		此位硬件置 1, 软件清除, 写 0 清除。
		UART 发送/接收奇偶校验错误标示:
0	TRE	TRE =0 则 UART 发送/接收完成时无奇偶校验错误;
0		TRE =1 则 UART 发送/接收完成时有奇偶校验错误。
		此位硬件置 1, 软件清除, 写 0 清除。

10.2.2 UART_IER 中断使能寄存器

CD01F	I/CE01H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
UAR	T_IER	R	SV	FIFO_EN	FIFO_HFEn	FIFO_FUEn	FIFO_OVEn	TXENDEn	TREEn
读	/写	ì	卖	读/写	读/写	读/写	读/写	读/写	读
复	位值		0	0	0	0	0	0	0
位编号	位符号	를 i i	说明						
7-6	RSV	化	マイス インス インス インス インス インス インス インス インス インス イ						
5	FIFO_E	N F	IFO 非	空中断使能	분: 当 FIFO_EN	N =0 时禁止; 当	FIFO_EN =1	使能。	
4	FIFO_H	En F	IFO 半	满中断使能	É: 当 FIFO_HI	-En =0 时禁止;	当 FIFO_HFE	n =1 使能。	
3	FIFO_FU	JEn F	IFO 全	满中断使能	É: 当 FIFO_FL	JEn =0 时禁止;	当 FIFO_FUE	n =1 使能。	
2	FIFO_O\	/En R	x-FIF	D 接收溢出	中断使能: 当	FIFO_OVEn =0	时禁止; 当 F	IFO_OVEn =	1 使能。
1	TXEND	En L	Jart 发	送完成中断	f使能:当 TXE	NDEn =0 时禁.	止; 当 TXENI)En =1 使能。)
0	TREE	n L	Jart 发	送/接收奇(禺校验错误中的	新使能:当 TRE	En =0 时禁止;	当 TREEn :	=1 使能。

10.2.3 UART_CR 控制寄存器

CD02H/CE02H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
UART_CR	RSV	TX_EN	TX_OEN	UART_LB	UART_P0	FLUSH	TRS	ODD_EN
读/写	读	读/写	读/写	读/写	读/写	读/写	读/写	读
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7-5	RSV	保留						
6	TX_EN	Uart 单线模式使能控制:						

		1
		TX_EN =0,不使能;
		TX_EN =1,使能。
		Uart 单线模式 TX 管脚数据传输方向控制:
5	TX_OEN	TX_OEN =0,TX 管脚作为数据输出脚;
		TX_OEN =1,TX 管脚作为数据输入脚。
		Uart 自测模式使能控制:
4	UART_LB	UART_LB =0,不使能;
		UART_LB =1,使能。
		奇偶校验使能控制:
3	UART_P0	UART_PD =0,有奇偶校验;
		UART_PD =1,没有奇偶校验。
		清除 uart 接收 FIFO 中的数据和指针:
2	FLUSH	FLUSH=0,不清除;
		FLUSH=1,清除。
		UART 发送数据标志:
1	TRS	TRS =0 发送数据不使能;
		TRS =1 发送数据使能。
		奇偶校验方式选择:
0	ODD_EN	ODD_EN =0,偶校验 Even Parity;
		ODD_EN =1,奇校验 Odd Parity。

10.2.4 UART_TDR 发送数据寄存器

CD03H/CE03H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
UART_TDR				UAR	TDATA			
读/写					写			
复位值					0			
位编号	位符号 说明							
7-0	UARTDATA 存放待发送的数据							

10.2.5 UART_RDR 接收数据寄存器

CD03H/CE03H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
UART_RDR				UAR	TDATA			
读/写				,	读			
复位值					0			

位编号	位符号	说明
7-0	UARTDATA	存放接收到的数据

10.2.6 UART_BPR_L 波特率参数低位寄存器

CD04H/CE04H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
UART_BPR_L	UART_BPR_L										
读/写	读/写										
复位值	0x74										
	11 44 114										
位编号	位符号	说明									
		波特率参数寄存器 UART_BPR_H、UART_BPR_L 构成 16 位分频器。 例如:系统时钟为 40MHz,为获得 9600 波特率, 则 UART_BPR = 40×1000000÷9600 = 1046H,即 UART_BPR_H =									
7-0	UART_BPR_L	10H, UART_BPR_L = 46H。									
		例如:系统时钟为 40MHz,为获得 19200 波特率,									
		则 UART_BPR = 0823H,即 UART_BPR_H = 08H,UART_BPR_L =									
		23H。									

注: 系统时钟需大于波特率 12 倍以上。

10.2.7 UART_BPR_H 波特率参数高位寄存器

CD05H/CE05H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
UART_BPR_H	UART_BPR_H										
读/写	读/写										
复位值	0x01										
位编号	位符号	说明									
	波特率参数寄存器 UART_BPR_H、UART_BPR_L 构成 16 位分频器。										
	例如:系统时钟为 40MHz,为获得 9600 波特率, 则 UART_BPR = 40×1000000÷9600 = 1046H,即 UART_BPR_H = 10H,UART_BPR_L = 46H。										
7-0											
	例如:系统时钟为 40MHz,为获得 19200 波特率, 则 UART_BPR = 0823H,即 UART_BPR_H = 08H,UART_BPR_L = 23H。										

注: 系统时钟需大于波特率 12 倍以上。

10.3 软件使用说明

10.3.1 UART 发送流程

- 1. 配置 PCLK1、PRESET1, 使能 UART, 复位释放。
- 2. 根据 IO 复用关系,将 IO 复用为 UART_RX, UART_TX。
- 3. 配置 UART CR、设置有无奇偶校验、发送数据使能。
- 4. 根据计算,配置 UART_BPR_H、UART_BPR_L,设置波特率。
- 5. 使能 UART 中断,使能总中断,配置 UART_IER,发送完成中断使能。
- 6. 向 UART_TDR 写入数据。
- 7. 查询 UART_ISR 中断状态。
- 8. 传输完成。

10.3.2 UART 接收流程

- 1. 配置 PCLK1、PRESET1, 使能 UART, 复位释放。
- 2. 根据 IO 复用关系,将 IO 复用为 UART_RX, UART_TX。
- 3. 配置 UART_CR,设置有无奇偶校验,发送数据使能。
- 4. 根据计算,配置 UART_BPR_H、UART_BPR_L,设置波特率。
- 5. 使能 UART 中断,使能总中断,配置 UART_IER,接收 FIFO 非空中断使能。
- 6. 查询 UART_ISR 中断状态。
- 7. 向 UART_TDR 读取数据。
- 8. 传输完成。

注意: 串口 IO 需在 PxPUN 寄存器中使能对应 IO 的内部上拉,否则 RX 脚为浮空状态,容易受干扰。

11 SPI

11.1 概述

串行外设接口(Serial Peripheral Interface, SPI)是外部设备通过单线交换数据的串行同步通讯手段。芯片提供了一个 SPI 接口模块,可配置为主设备或从设备,实现与外部的 SPI 通信。

11.2 主要特性

- 支持 SPI 标准协议,主从模式可配。
- MISO、MOSI,单线传输,支持半双工、全双工传输,支持数据大小端配置。
- 可编程时钟极性和相位。
- 支持 TX_ONLY 模式传输。
- 支持 PCB 板延时补偿功能, Slave 模式下支持 SSN/SCK/MOSI 输入信号的组合逻辑滤波功能。

11.3 寄存器描述

SPI 寄存器基地址: 0xC400。

表 11-1: 寄存器列表

地址	名称	描述
0xC400	SPI_CR1	控制寄存器1
0xC401	SPI_CR2	控制寄存器2
0xC402	SPI_CR3	控制寄存器3
0xC403	SPI_CR4	控制寄存器4
0xC404	SPI_IE	中断使能寄存器
0xC405	SPI_SR	状态寄存器
0xC406	SPI_TXBUF	发送数据寄存器
0xC407	SPI_RXBUF	接收数据缓冲寄存器

11.3.1 SPI_CR1 控制寄存器

C400H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SPI_CR1		BR[2:0]		SSN_MODE	LSBFIRST	MSTR	CPOL	СРНА
读/写		读/写		读/写	读/写	读/写	读/写	读/写
复位值		1		0	0	1	0	0

位编号	位符号	说明
		Master 模式波特率配置位:
		000: f _{PCLK} /2
		001: f _{PCLK} /4
		010: f _{PCLK} /8
7-5	BR[2:0]	011: f _{PCLK} /16
7-5	DK[Z.U]	100: f _{PCLK} /32
		101: f _{PCLK} /64
		110: f _{PCLK} /128
		111: f _{PCLK} /256
		当通信正在进行的时候,不能修改这些位。
		在 Master 模式下,SSN_MODE 表示在每传完 8Bit 后,SSN 是否会被拉高。
4	SSN_MODE	0:在 TXBUF 为非空,且已经发送完毕 8Bit,如果 WAIT_CNT 不为 0,在等
4	1331 1 _1110DE	待 1+WAIT_CNT 个 SCK Cycle 后,SSN 被拉高。
		1:在 TXBUF 为非空,且已经发送完毕 8Bit,SSN 被拉高。
		帧格式(Frame format):
3	LSBFIRST	0:先发送MSB(Bit7);
3	LODITION	1: 先发送LSB(Bit0)。
		注:当通信在进行时不能改变该位的值。
		Master/Slave 模式选择:
2	MSTR	0: Slave;
		1: Master。
		时钟极性选择:
1	CPOL	0:串行时钟 stop 在低电平;
1	CPOL	1:串行时钟 stop 在高电平。
		注:当通信在进行时不能改变该位的值。
		时钟相位选择:
0	СРНА	0: 第一个时钟边沿是第一个捕捉边沿;
	CFNA	1: 第二个时钟边沿是第一个捕捉边沿。
		注: 当通信在进行时不能改变该位的值。

注意:

● 当出现 ERROR 后, 该寄存器保持不变, 若需要重新启动 SPI, 软件先写 SPI_en 为 0, 再写为 1。

● 改变 CPOL,CPHA 后需要重新启动 SPI,软件先写 SPI_en 为 0,再写为 1。

11.3.2 SPI_CR2 控制寄存器

C401H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SPI_CR2	SAMPLE_P	TXONLY_AUTO_CLR	SPI_EN	SSN_MCU_EN	WAIT	_CNT	RSV	RSV
读/写	读/写	读/写	读/写	读/写	读/	'写	读	读
复位值	0	1	0	0	C		0	0

	•							
位编号	位符号	说明						
		Master 模式下,对 Slave 输出的 MISO 信号采样点位置的选择						
		SamplePosition。						
7	SAMPLE_P	0: 采样点与协议一致;						
7	Sdin_sample_mode	:波特率速度低于 f _{pclk} /2 时,起码延后一个 SPIClk 周期。采样点延后						
		个 SPI sck 周期。						
		注:当波特率为 f _{pclk} /2 的时候,该位不起作用。						
		TXONLY 硬件自动清空的使能:						
,	TXONLY_AUTO_CLR	0:关闭 TXONLY 硬件自动清零;						
6	(原 TXONLY_EN)	1:TXONLY 硬件自动清零有效,软件打开 SPI_CR3 的 TXONLY 后,等						
		待发送完毕后,硬件清零。						
		SPI 使能。采用关闭时钟的方式来关闭使能。						
5	SPI_EN	0:关闭 SPI。复位状态、清空 TXBUF 清空 RXBUF。						
		1:使能 SPI。						
		在Master模式下,由软件控制SSN端口的使能:						
4	SSN_MCU_EN	1:由软件控制SSN输出,使能有效;						
		0: 由内部硬件控制 SSN 输出。						
		在 Master 模式下, 每发完 8Bit 后加入 WAIT 再传输下一个 8Bit 的数据:						
		00: 无等待;						
3-2	WAIT_CNT	01: 中间加入 2 个 SCK Cycle 等待;						
		10:中间加入 3 个 SCK Cycle 等待;						
		11:中间加入 4 个 SCK Cycle 等待。						
1-0	RSV	保留						
3-2	SSN_MCU_EN WAIT_CNT	1: 使能 SPI。 在Master模式下,由软件控制SSN端口的使能: 1: 由软件控制SSN输出,使能有效; 0: 由内部硬件控制 SSN 输出。 在 Master 模式下,每发完 8Bit 后加入 WAIT 再传输下一个 8Bit 的数00: 无等待; 01: 中间加入 2 个 SCK Cycle 等待; 10: 中间加入 3 个 SCK Cycle 等待; 11: 中间加入 4 个 SCK Cycle 等待。						

注意: 当出现 ERROR 后,该寄存器保持不变,若需要重新启动 SPI,软件先写 SPI_en 为 0,再写为 1。

11.3.3 SPI_CR3 控制寄存器

C402H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
SPI_CR3	SCK_EN	MOSI_EN	MISO_EN	CS_EN	TX_ONLY	SSN_MCU	Signal_filter	send_p			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写			
复位值	1	1	1	1	0	1	1	0			
位编号	位符号	说明									
		P1_3 作为	SPI_SCK 信 ⁻		 当此位为 1,	且 SPI_EN	 为 1 时,P1_	3 作为			
7	SCK_EN	SPI_SCK 信号。									
		注意: P0_	1/P0_4/P2_3	3 作为 SP	I_SCK 时不	需设置此位					
		P1_4 作为	SPI_MOSI 信	号使能。	当此位为 2	I,且 SPI_EN	Ⅰ为1时, P1	_4 作为			
6	MOSI_EN	SPI_MOSI	信号。								
		注意: P2_	0/P2_3/ P2_	7 作为 SF	PI_MOSI 时	不需设置此位	<u>፲</u>				
		P1_5 作为	SPI_MISO 信	号使能。	当此位为 1	I,且 SPI_EN	Ⅰ为1时, P1	_5 作为			
5	MISO_EN	SPI_MISO 信号。									
		注意: P1_	1/P2_2/ P2_	6 作为 SF	PI_MISO 时	不需设置此位	<u> </u>				
		P0_3 作为 SPI_CSN 信号使能。当此位为 1,且 SPI_EN 为 1 时,P0_3 作为									
4	CS_EN	SPI_CSN 信	号。								
		注意: P0_	0/P2_2/ P2_	5 作为 SF	PI_CSN 时不	需设置此位					
		限制 SPI 仅启动发送:									
3			K_ONLY 模式								
		1: 使能 T	K_ONLY 模式	, ,							
			模式下,如果	果 SSN_M	CU_EN =1,	MCU 可以i	通过写此位控	割 SSN			
2	I SSN MCU	输出端口:									
	_	0: SSN 被软件写成 0;									
			软件写成 1。	•							
			N/SCK/MOS	31 上可能7	产生的毛刺	数字滤波:					
1	Signal_filter		;								
		1: 滤波。	D 1 .	40.1.44			. 4-1/ 1/				
			,			使用 transm	nit 起始点时钉	甲:			
0	Sdout_send_m										
	ode		个周期进行			—					

注意: 当出现 ERROR 后,该寄存器保持不变,若需要重新启动 SPI,软件先写 SPI_en 为 0,再写为 1。

11.3.4 SPI_CR4 控制寄存器

C403H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SPI_CR4	RSV	RSV	RSV	RSV	CLR_TXBUF	CLR_RXBUF	RSV	RSV
读/写	读	读	读	读	写	写	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-4	RSV	保留
3	CLR_TXBUF	写 1 清除 tx_buf 所有内容,并且清除 TXBUF_EMPTY 标志位,硬件自动回 0。
2	CLR_RXBUF	写 1 清除 rx_buf 所有内容,并且清除 RXBUF_FULL 标志位,硬件自动回 0。
1-0	RSV	保留

注意: 当出现 ERROR 后, TXONLY 位会被硬件自动重置为 0。所以当重新启动 SPI 时, 该寄存器需要重新配置。

11.3.5 SPI_IE 中断使能寄存器

中断使能寄存中根据此寄存器的使能产生中断:

C404H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SPI_IE	RSV	RSV	RSV	RSV	RSV	ERROR_IE	TX_E_IE	RX_NE_IE
读/写	读	读	读	读	读	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-3	RSV	保留。
		错误中断使能,包括 TXBUF/ RXBUF 溢出,Master/Slave Err:
2	ERROR_IE	0: 关掉中断;
		1: 使能中断。
	TX_E_IE	发送 TXBUF 空中断使能:
1		0: 关掉中断;
		1: 使能中断。
		接收 RXBUF 非空中断使能:
0	RX_NE_IE	0: 关掉中断;
		1: 使能中断。

11.3.6 SPI_SR 状态寄存器

C405H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SPI_SR	RSV	RSV	RSV	RXBUF_WCOL	TXBUF_WCOL	BUSY	TXBUF_EMPTY	RXBUF_FULL		
读/写	读	读	读	读/写	读/写	读/写	读/写	读/写		
复位值	0	0	0	0 0 0 1 0						
位编号	位:	符号	说明							
7-5	R	SV	保留							
4	RXBU	F_WCOL	. RX i	益出,软件写 0	 清 0。					
3	当 TXBUF 为满时,MCU 进行写 TXBUF 操作: 1: 冲突; 0: 无冲突。 软件写 0 清 0。									
2	ВІ	JSY	1: 3	表示 TXBUF 为望 表示 TXBUF 不为	, 为空,或者 SPI ā	生传输数:	•	BUSY 信号为 0。		
1	TXBUF	EMPT	r 0: 1	XBUF 动作可清 「XBUF 中有数据 「XBUF 中无数据	等待发送;					
0	RXBU	F_FULL	0: F	XBUF 动作可清 RXBUF 中无数据 RXBUF 中有数据	号;					

11.3.7 SPI_TXBUF 发送数据寄存器

MCU 把需要发送的数据写入该寄存器, 达到把发送数据缓存到 SPI_TXBUF 的目的。SPI_TXBUF 无实际寄存器, 只支持写操作。

C406H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SPI_TXBUF		WR_DATA							
读/写		写							
复位值				0					
位编号	位符号	位符号 说明							
7-0	WR_DATA	该寄存器	在写的时	候,如果	SPI_TXBU	F已经为满	,将产生溢出	出中断。	

11.3.8 SPI_RXBUF 接收数据缓冲寄存器

通过 SPI 接口接收的数据,会先缓存到 SPI_RXBUF 中,当 SPI 接口完成一个字节的接收后,会往 SPI_RXBUF 写入一个字节的数据。MCU 通过读该寄存器,可以得到从 SPI 接收到的数据。

C407H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
SPI_RXBUF		D7-D0									
读/写				读							
复位值		0									
位编号	位符号	说明									
7-0	D7-D0	MCU 根排 SPI_RXBI	_		空中断,对	讨该地址进行	亍读操作, 读	到内部			

11.4 软件操作流程

11.4.1 Master 主机发送

- 1. 配置 SPI 4 线管脚复用 (SPI_CR3 寄存器相关位或 IO_CFG 寄存器相关位)。
- 2. 写 SPI_CR1 寄存器中的 MSTR 位, 使能 master 模式。
- 3. 若需要软件控制 SSN 信号,写 SPI_CR2 寄存器中的 SSN_MCU_EN 位。
- 4. 写 SPI_CR1 寄存器中的 BR 位,配置 SPI 通信波特率。
- 5. 写 SPI_CR1 寄存器中的 CPOL, CPHA 位, 配置 SPI 通信模式。
- 6. 若使用中断,写 EAL 位和 ESPI 位,写 SPI_IE 寄存器,使能 TX_E_IE 中断。
- 7. 写 SPLSR 寄存器,清除所有中断标志位。写 SPLCR4 寄存器,清除 TX_BUF 内容。
- 8. 写 SPI_CR2 寄存器中的 SPI_EN 位,使能 SPI。
- 9. 写 SPI_CR3 寄存器中的 SSN_MCU 位为 0, 开始 SPI 通信。
- 10. 等待 SPI_SR 寄存器中的 TXBUF_EMPTY 为 1 时,往 SPI_TXBUF 寄存器中放入要发送给从机的数据。
- 11. 若需发送多个字节数据, 重复步骤 10, 发送完所有数据后, 等待 SPI_SR 寄存器中的 BUSY 位

从1变成0以后,结束发送。

12. 写 SPI_CR3 寄存器中的 SSN_MCU 位为 1, 结束 SPI 通信。

11.4.2 Master 主机接收

- 1. 配置 SPI 4 线管脚复用 (SPI CR3 寄存器相关位或 IO CFG 寄存器相关位)。
- 2. 写 SPI_CR1 寄存器中的 MSTR 位,使能 Master 模式。
- 3. 若需要软件控制 SSN 信号,写 SPI_CR2 寄存器中的 SSN_MCU_EN 位。
- 4. 写 SPI_CR1 寄存器中的 BR 位, 配置 SPI 通信波特率。
- 5. 写 SPI_CR1 寄存器中的 CPOL, CPHA 位,配置 SPI 通信模式。
- 6. 写 EAL 位和 ESPI 位,写 SPI_IE 寄存器,使能 RX_NE_IE 中断。
- 7. 写 SPI_SR 寄存器,清除所有中断标志位。写 SPI_CR4 寄存器,清除 TX_BUF 内容。
- 8. 写 SPI_CR2 寄存器中的 SPI_EN 位, 使能 SPI。
- 9. 写 SPI_CR3 寄存器中的 SSN_MCU 位为 0, 开始 SPI 通信。
- 10. 等待 SPI_SR 寄存器中的 TXBUF_EMPTY 为 1 时,往 SPI_TXBUF 寄存器中放入要发送给从机的 1Byte 数据,然后等待 RX_BUF 非空中断触发,读取 RXBUF 寄存器,接收从机发来的数据。
- 11. 若需接收多个字节数据,重复步骤 10,接收完所有数据后,等待 SPI_SR 寄存器中的 BUSY 位 从 1 变成 0 以后,结束发送。
- 12. 写 SPI_CR3 寄存器中的 SSN_MCU 位为 1, 结束 SPI 通信。

11.4.3 Slave 从机发送

- 1. 配置 SPI 4 线管脚复用 (SPI_CR3 寄存器相关位或 IO_CFG 寄存器相关位)。
- 2. 写 SPI CR1 寄存器中的 MSTR 位, 使能 Slave 模式。
- 3. 写 SPI_CR1 寄存器中的 CPOL, CPHA 位,配置 SPI 通信模式;
- 4. 若使用中断,写 EAL 位和 ESPI 位,写 SPI_IE 寄存器,使能 TX_E_IE 中断。
- 5. 写 SPI_SR 寄存器,清除所有中断标志位。写 SPI_CR4 寄存器,清除 TX_BUF 内容。

- 6. 写 SPI_CR2 寄存器中的 SPI_EN 位,使能 SPI。
- 7. 设置 SPI_CR3 寄存器里的 TX_ONLY 位,使能单发模式。
- 8. 等待 TX_E_IE 中断触发,或者查询 SPI_SR 寄存器里的 TXBUF_EMPTY 状态位置位以后,把要发送的数据写到 RXBUF 寄存器中,查询 SPI_SR 寄存器中的 BUSY 位,等待 TXBUF 为空。
- 9. 若从机要发送多个数据, 重复步骤 8。

11.4.4 Slave 从机接收

- 1. 配置 SPI 4 线管脚复用 (SPI_CR3 寄存器相关位或 IO_CFG 寄存器相关位)。
- 2. 写 SPI CR1 寄存器中的 MSTR 位,使能 Slave 模式。
- 3. 写 SPI_CR1 寄存器中的 CPOL, CPHA 位,配置 SPI 通信模式。
- 4. 若使用中断,写 EAL 位和 ESPI 位,写 SPI_IE 寄存器,使能 RX_NE_IE 中断。
- 5. 写 SPI_SR 寄存器,清除所有中断标志位。写 SPI_CR4 寄存器,清除 TX_BUF 内容。
- 6. 写 SPI CR2 寄存器中的 SPI EN 位, 使能 SPI。
- 7. 等待 RX_NE_IE 中断触发,或者查询 SPI_SR 寄存器里的 RXBUF_FULL 状态位置位以后,读取 RXBUF 寄存器中的数据。

UM800YA 用户手册 LPTIMER(低功耗定时器)

12 LPTIMER(低功耗定时器)

12.1 概述

LPTIMER 是运行在 Always-On 电源域下的 16bits 低功耗定时/计数器模块。通过选择合适的工作时钟,LPTIMER 在各种低功耗模式下保持运行,并且只消耗很低的功耗。LPTIMER 甚至可以在没有内部时钟的条件下工作,因此可实现休眠模式下的外部脉冲计数功能。此外,与外部输入的触发信号结合,可以实现低功耗超时唤醒功能。

12.2 主要特性

- 16-bit upcounter
- 3-bit 异步时钟预分频器, 8 种分频系数(1、2、4、8、16、32、64、128)。
- 可选工作时钟:

内部时钟源: LSCLK、RCLP、系统时钟

外部时钟源: LPTIN (带有模拟滤波)

- 16bit 比较寄存器
- 16bit 目标值寄存器
- 软件/硬件触发
- 两路输入捕获
- 输入极性选择
- 无时钟外部脉冲计数
- 外部触发的休眠超时唤醒
- 支持 2 路 16-bit PWM

UM800YA 用户手册 LPTIMER(低功耗定时器)

12.3 结构框图

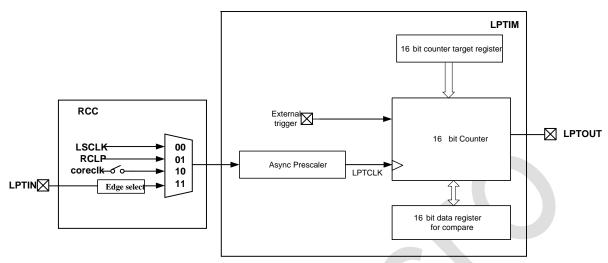


图 12-1: 结构框图

12.4 工作模式

12.4.1 普通定时器

- 使用内部时钟或外部时钟输入工作。
- 使能后有两个计数时钟的同步过程。
- 使能后即开始工作,不需要 trigger 触发。

12.4.2 Trigger 脉冲触发计数

- 使用内部时钟工作。
- 内部时钟采样外部输入的异步 trigger 信号。
- 可以对 trigger 的上升、下降、双边沿计数。
- 使能后有两个计数时钟的同步过程。

12.4.3 外部异步脉冲计数

- 直接使用外部输入脉冲作为计数工作时钟。
- 输入极性可配置,实现上升沿计数或下降沿计数。
- 不需要 trigger 触发。
- 使能后无同步过程。

12.4.4 Timeout 模式

- 使用内部时钟或外部输入时钟工作。
- 采样外部输入的异步 trigger 信号。
- 首次 trigger 启动计数器,启动后采样到 trigger 则清零并重启计数器。
- 计数器溢出前没有出现新的 trigger,则产生溢出中断并停止计数,清除使能。
- 使能后有两个计数时钟的同步过程。

12.4.5 计数模式

LPTIMER 有两种计数模式。

- 连续计数模式: 计数器被触发后保持运行, 直到被关闭为止。计数器达到目标值后回到 0 重新 开始计数,并产生溢出中断。
- 单次计数模式: 计数器被触发后计数到目标值后回到 0. 并自动停止. 产生溢出中断。

12.4.6 外部触发的超时唤醒

LPTIMER 可以由外部输入的 trigger 信号触发使能,也可以由软件触发使能。在 Timeout 模式下,第一个外部触发输入的有效沿将启动计数器,而后续触发信号将清零计数器。如果在计数器达到比较值之前没有有效触发信号到来,则产生超时中断,唤醒 MCU。

外部输入 trigger 信号的有效沿可以由寄存器配置,外部 trigger 信号被认为是一个异步输入,

UM800YA 用户手册 LPTIMER(低功耗定时器)

因此有效沿的采样和判决有至少 2 个计数时钟的 latency。

12.4.7 16bit PWM

使能 PWM 模式后 LPTIMER 从 0x0000 开始计数,计数值等于比较值时输出置高,计数值等于 终值寄存器时输出变低。PWM 周期由终值寄存器决定,占空比由比较值寄存器决定。

12.5 寄存器描述

LPTIMER 寄存器基地址: 0xC800。

表 12-1: 寄存器列表

地址	名称	描述
0xC800	LPTIMER_CFG0	LPTIMER 配置寄存器 0
0xC801	LPTIMER_CFG1	LPTIMER 配置寄存器 1
0xC802	LPTIMER_CNT_L	LPTIMER 计数低位寄存器
0xC803	LPTIMER_CNT_H	LPTIMER 计数高位寄存器
0xC804	LPTIMER_CMP1_L	LPTIMER 捕获/比较值 1 低位寄存器
0xC805	LPTIMER_CMP1_H	LPTIMER 捕获/比较值 1 高位寄存器
0xC806	LPTIMER_TARGET_L	LPTIMER 目标值低位寄存器
0xC807	LPTIMER_TARGET_H	LPTIMER 目标值高位寄存器
0xC808	LPTIMER_IE	LPTIMER 中断使能寄存器
0xC809	LPTIMER_IF	LPTIMER 中断标志寄存器
0xC80A	LPTIMER_CTRL	LPTIMER 控制寄存器
0xC80B	LPTIMER_CCMCFG1	LPTIMER 捕获通道 1 控制寄存器
0xC80C	LPTIMER_CCMCFG2	LPTIMER 捕获通道 2 控制寄存器
0xC80D	LPTIMER_CMP2_L	LPTIMER 捕获/比较值 2 低位寄存器
0xC80E	LPTIMER_CMP2_H	LPTIMER 捕获/比较值 2 高位寄存器
0xC811	LPTIMER_LOAD	自动装载寄存器
0xC812	LPTIMER_BUFFER_L	计数值装载低位寄存器
0xC813	LPTIMER_BUFFER_H	计数值装载高位寄存器

4-3

12.5.1 LPTIMER_CFG0 寄存器

C800H	Bit7	Bite	t6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	
LPTIMER_CFG0	TRIGCFG		EDGESEL	CLK	SEL		DIVSEL			
读/写	读/写		读/写	读/	写		读/写			
复位值		0		0	1	0		0		
位编号	位符号	子 说	说明							
7-6	TRIGCI	00 =G 01	D:外 1:外 D/11:	发边沿选择: 部输入信号上升 部输入信号下降 外部输入信号_ 这些位。	沿 trigger;	;	当通信正	在进行的	〕时候,不	
5	EDGES		能修改这些位。 LPTIN 输入边沿选择: 0: LPTIN 的上升沿计数;							

1: LPTIN 的下降沿计数;

00: LSCLK 作为计数时钟(RCL 38KHz);

10: PCLK 的门控时钟作为计数时钟;

01: RCLP 作为计数时钟(RCL 38KHz 分频的 1Hz 时钟);

时钟源选择:

111: 128 分频。

11: LPTIN 作为计数时钟。 计数时钟分频选择: 000: 1分频;

CLKSEL

001: 2分频; 010: 4分频; 2:0 DIVSEL 011: 8分频; 100: 16分频; 101: 32分频; 110: 64分频;

12.5.2 LPTIMER_CFG1 寄存器

C801H	Bit7	Bit6	Bit5	Bit4 Bit3	Bit2	Bit1	Bit0
LPTIMER_CFG1	EXTRIGGER_IO_IEN	LPOUT_IO_IEN	LPTIN_IO_IEN	TMODE	MODE	PWM	POLARITY
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

UM800YA 用户手册 LPTIMER(低功耗定时器)

复位值	0	0	0	0	0	0	0			
位编号	位符号	说明								
7	EXTRIGGER_IO_IEN	1: P1_1 作为 EXTRIGGER_IO_IEN。								
,	EXTINOUEN_IO_IEIV	注: P1_4 作为	EXTRIGGER_IO	时不需该	置此位	0				
6	LPOUT_IO_IEN	1: P0_3 作为 LPOUT1。								
		注:P0_0/ P2_0 作为 LPTOUT1 时不需设置此位。								
5	LPTIN_IO_IEN	1: P1_0 作为 LPTIN。 _PTIN_IO_IEN 注: P1_3 作为 LPTIN 时不需设置此位。								
		_	LPIIN 时个需设	直此位。						
		工作模式选择:		 IV						
		00: 带波形输出								
4-3	TMODE	TMODE 01: Trigger 脉冲触发计数模式;								
		10:外部异步脉冲计数模式;								
		11: Timeout 相	莫式。 ————————————————————————————————————							
		计数模式:								
		0: 连续计数模:			•					
2	MODE	数器达到目标值					·			
			式: 计数器被触	发后计数	到目标值	直后回至	到 0,并自动			
		停止,产生溢出	出中断。							
		脉宽调制模式:								
1	PWM	0: 周期方波输	•							
		1: PWM 输出标	莫式。							
		计数时钟分频说	5择:							
0	POLARITY	0: 正极性波形, 即第一次计数值=比较值时产生输出波形上升沿;								
		1: 负极性波形	,即第一次计数	值=比较值	討产生	输出波	形下降沿。			

12.5.3 LPTIMER_CNT 计数值寄存器

		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LPTIMER_CNT_L(C	(802H)	CNT16[7:0]							
LPTIMER_CNT_H(C	C803H)	CNT16[15:8]							
读/写		读							
复位值					0				
位编号	1	位符号	说明						
15-0	(CNT16	计数器数值						

12.5.4 LPTIMER_CMP1 比较值寄存器

		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
LPTIMER_CMP1_L(0	R_CMP1_L(C804H) COMPARE_REG[7:0]											
LPTIMER_CMP1_H(P1_H(C805H)											
读/写 读/写												
复位值			0									
位编号	亿	位符号 说明										
15-0 COMPARE REC		DADE DEC	捕捉/比较值寄存器 1。									
15-0	PARE_REG	读取 LP	读取 LPTIMER_CMP1_H 寄存器将清除 COMPIF 标志位。									

12.5.5 LPTIMER_TARGET 目标值寄存器

		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LPTIMER_TARGE		I	ARGET_I	REG[7:0]					
LPTIMER_TARGET_H(C807H) TARGET_REG[15:8]									
读/写					读/	写			
复位值	i				0				
位编号 位符号 说明									
15-0	TARGET	REG 目标值寄存器							

12.5.6 LPTIMER_IE 中断使能寄存器

中断使能寄存中根据此寄存器的使能产生中断:

C808H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LPTIMER_IE		RSV			COMP2IE	TRIGIE	OVIE	COMPIE
读/写		读			读/写	读/写	读/写	读/写
复位值		0			0	0	0	0
	Υ							
位编号	位符号	说明						
7-4	RSV	保留						

		比较匹配 2 中断使能位:
3	COMP2IE	1: 计数器值和比较值匹配 2 中断使能;
		0: 计数器值和比较值匹配 2 中断禁止。
		外部触发到来中断使能位:
2	TRIGIE	1: 外部触发到来中断使能;
		0:外部触发到来中断禁止。
		计数器溢出中断使能位:
1	OVIE	1: 计数器溢出中断使能;
		0: 计数器溢出中断禁止。
		比较匹配 1 中断使能位:
0	COMPIE	1: 计数器值和比较值匹配 1 中断使能;
		0: 计数器值和比较值匹配 1 中断禁止。

12.5.7 LPTIMER_IF 中断标志寄存器

C809H	Bit7	Bit6	Bit5 Bit4		Bit3	Bit2	Bit1	Bit0		
LPTIMER_IF		R	SV		COMP2IF	TRIGIF	OVIF	COMPIF		
读/写		ì	 卖		读/写	读/写	读/写	读/写		
复位值		(0		0	0	0	0		
	1									
位编号	位符	符号	说明							
7-4	RS	SV	保留							
3	СОМ	IP2IF	-	居值和比 较	P断使能位,写 交值匹配 2 中断					
2	TRI	GIF	外部触发到来中断标志位,写 1 清零: 1: 外部触发到来中断产生; 0: 无中断产生。							
1	OV		计数器溢出中断使能位,写 1 清零: 1: 计数器溢出中断产生;							

0

COMPIF

捕获/比较匹配1中断使能位,写1清零:

1: 计数器值和比较值匹配 1 中断产生;

0: 无中断产生。

0: 无中断产生。

12.5.8 LPTIMER_CTRL 控制寄存器

C80AH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit1	Bit0				
LPTIMER_CTRL			RS	SV			CAP1SRSEL	LPTEN			
读/写			រ៉ៃ	ф			读/写	读/写			
复位值			C)			0	0			
位编号	位符	号	说明	说明							
7-2	RS	V	保留								
			通道 1 担	浦捉信号	源选择:						
1	CAP1S	RSEL	0: LPT	_CAP1输	ì入;						
			1: RCL	P(RCL 3	3KHz 分	频的 1H	lz 时钟)。				
			LPTIMER 使能位:								
0	LPT	EN	1: 使能计数器计数;								
			0:禁止): 禁止计数器计数。							

12.5.9 LPTIMER_CCMCFG1 控制寄存器

Rit7 Rit6 Rit5 Rit4

C80E	оп	BIT/	BITO BITO BIT4 BIT3 BITZ BIT1 BITU						BITU	
LPTIMER_C	CMCFG1	RS	SV	CAP1E	DGE	RS	SV	CC1S	CC1E	
读/坚	=	ì		读/	写	i	<u> </u>	读/写	读/写	
复位	值	(0		C)	0	0	
位编号	位往	符号	说明	说明						
7-6	RS	SV	保留							
5-4	CAP1	EDGE	00: 上記 01: 下回 10: 上記	通道 1 捕捉边沿选择: 00: 上升沿捕捉; 01: 下降沿捕捉; 10: 上升下降沿捕捉; 11: 未定义。						
3-2		-	-							
1	CC	C1S	通道 1 捕捉/比较选择: 0: 通道 1 配置为输出; 1: 通道 1 配置为输入。							
0	CC	C1E	通道 1 捕捉/比较使能: 0: 通道 1 捕获/比较功能禁止; 1: 通道 1 捕获/比较功能使能。							

12.5.10 LPTIMER_CCMCFG2 控制寄存器

C80CH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LPTIMER_CCMCFG2	RSV		CAP2EDGE		RSV	CC2P	CC2S	CC2E
读/写	读		读/写		读	读/写	读/写	读/写
复位值	0		0		0	0	0	0

位编号	位符号	说明				
7-6	RSV	保留				
		通道 2 捕捉边沿选择:				
		00: 上升沿捕捉;				
5-4	CAP2EDGE	01: 下降沿捕捉;				
		10: 上升下降沿捕捉;				
		11: 未定义。				
3	RSV	保留				
		通道 2 输出极性选择:				
2	CC2P	0: CNT<=CCR2 时置低,CNT>CCR2 时为高;				
		1: CNT<=CCR2 时置高,CNT>CCR2 时为低。				
		通道2捕捉/比较选择:				
1	CC2S	0: 通道2配置为输出;				
		1: 通道2配置为输入。				
		通道 2 捕捉/比较使能:				
0	CC2E	0: 通道 2 捕获/比较功能禁止;				
		1: 通道 2 捕获/比较功能使能。				

12.5.11 LPTIMER_CMP2 比较值寄存器

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LPTIMER_CMP2_L(C80DH)		COMPARE2_REG[7:0]							
LPTIMER_CMP2_H(C80EH)		COMPARE2_REG[15:8]							
读/写				读	/写				
复位值		0							

位编号	位符号	说明
15.0		捕捉/比较值寄存器 2
15-0	COMPARE2_REG	读取 LPTIMER_CMP2_H 寄存器将清除 COMP2F 标志位

12.5.12 LPTIMER_LOAD 自动装载寄存器

C811H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LPTIMER_LOAD				RSV				LPTEN	
读/写				读				读/写	
复位值		0							
冷 点日	<i>1</i> 2.66 G	,¥ 10							
位编号	位符号	说明							
7-1	RSV	保留							
	I DTIMED I C	当软化	当软件写 LPTIMER_LOAD=1 时,硬件把当前计数值放到						
0	LPTIMER_LC	存器。)						

12.5.13 LPTIMER_BUFFER 计数值装载寄存器

		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LPTIMER_BUFFER_L(C812H)					BUFF	ER[7:0]			
LPTIMER_BUFFER_	H(C813H)	BUFFER[15:8]							
读/写		读/写							
复位值		0							
位编号	位符-	号	说明						
15-0	BUFF	当软件写 LPTIMER_LOAD 寄存器时,硬件把当前设FER buffer 寄存器。						把当前计	数值放到

12.6 软件工作流程

- 1. 选择时钟源,设置分频值,设置工作模式和计数模式。
- 2. 设置高低位比较寄存器的值。
- 3. 设置高低位目标寄存器的值。
- 4. 打开中断标志使能。
- 5. 打开 LPTEN 使能位, 启动计数器。

12.6.1 普通定时器

- 1. 配置 LPTIMER_CFG.CLKSEL,选择时钟源。
- 2. 配置 LPTIMER_CFG.DIV,设置分频值。
- 3. 配置 LPTIMER CFG.MODE,设置计数模式。
- 4. 配置 LPTIMER_CFG.TMODE,选择普通定时器模式。
- 5. 配置 LPTIMER_TARGET 目标寄存器值。
- 6. 使能 LPTIMER_IE 中断寄存器,选择溢出中断。
- 7. 使能 LPTIMER CTRL.LPTEN 位, 启动计数器。

12.6.2 PWM 输出

- 1. 配置 LPTIMER_CFG.CLKSEL,选择时钟源。
- 2. 配置 LPTIMER_CFG.DIV,设置分频值。
- 3. 配置 LPTIMER_CFG.MODE,设置计数模式。
- 4. 配置 LPTIMER_CFG.PWM, 选择 PWM 输出模式。
- 5. 配置 LPTIMER_CFG.POLARITY, 选择波形极性。
- 6. 配置 LPTIMER_CFG.TMODE, 选择普通定时器模式。
- 7. 配置 LPTIMER_CMP 比较寄存器值。
- 8. 配置 LPTIMER CCMCFG 配置相应的通道比较输出,使能比较功能。
- 9. 配置 LPTIMER_TARGET 目标寄存器值。
- 10. 使能 LPTIMER_IE 中断寄存器, 打开中断。
- 11. 使能 LPTIMER_CTRL.LPTEN 位, 启动计数器。

12.6.3 Trigger 脉冲触发计数模式

1. 配置 LPTIMER_CFG.CLKSEL,选择时钟源。

- 2. 配置 LPTIMER_CFG.DIV,设置分频值。
- 3. 配置 LPTIMER_CFG.MODE,设置计数模式。
- 4. 配置 LPTIMER_CFG.TRIGCFG,设置外部触发边沿。
- 5. 配置 LPTIMER CFG.TMODE, 选择 Trigger 脉冲触发计数模式。
- 6. 使能 LPTIMER_IE.TRIGIE 中断寄存器, 打开外部触发中断。
- 7. 使能 LPTIMER_CTRL.LPTEN 位, 启动计数器。

12.6.4 外部异步脉冲触发计数模式

- 1. 配置 LPTIMER CFG.CLKSEL,选择时钟源。
- 2. 配置 LPTIMER_CFG.DIV,设置分频值。
- 3. 配置 LPTIMER_CFG.MODE,设置计数模式。
- 4. 配置 LPTIMER_CFG.EDGESEL,设置 LPTIN 输入边沿。
- 5. 配置 LPTIMER CFG.TMODE,选择外部异步脉冲计数模式。
- 6. 配置 LPTIMER_TARGET 目标寄存器值。
- 7. 使能 LPTIMER_IE 中断寄存器, 打开中断。
- 8. 使能 LPTIMER_CTRL.LPTEN 位, 启动计数器。

12.6.5 TIMEOUT 模式

- 1. 配置 LPTIMER_CFG.CLKSEL,选择时钟源。
- 2. 配置 LPTIMER_CFG.DIV,设置分频值。
- 3. 配置 LPTIMER_CFG.MODE,设置计数模式。
- 4. 配置 LPTIMER_CFG.TRIGCFG,设置外部触发边沿。
- 5. 配置 LPTIMER_CFG.TMODE, 选择 Timeout 模式。
- 6. 配置 LPTIMER_TARGET 目标寄存器值。
- 7. 使能 LPTIMER_IE 中断寄存器, 打开溢出中断。

8. 使能 LPTIMER_CTRL.LPTEN 位, 启动计数器。

注: 计数器溢出前没有出现新的 trigger,则产生溢出中断并停止计数,并清除使能,如果要重新使用,需要再次使能该中断。

12.6.6 输入捕获

- 1. 配置 LPTIMER_CFG.CLKSEL,选择时钟源。
- 2. 配置 LPTIMER_CFG.DIV,设置分频值。
- 3. 配置 LPTIMER_CFG.MODE,设置计数模式。
- 4. 配置 LPTIMER CFG.POLARITY, 选择波形极性。
- 5. 配置 LPTIMER_CFG.TMODE,选择普通定时器模式。
- 6. 配置 LPTIMER_CCMCFG 配置相应的通道捕获输入, 使能通道捕获功能。
- 7. 配置 LPTIMER_TARGET 目标寄存器值。
- 8. 使能 LPTIMER IE 中断寄存器, 打开中断。
- 9. 使能 LPTIMER_CTRL.LPTEN 位, 启动计数器。
- 10. 在捕获中断中读取 LPTIMER_CMP 比较寄存器值即可获取捕获时的计数值。

13 GTIMER

13.1 特性

- 16-bit 向上、向下、双向计数自动重载计数器。
- 16-bit 可编程预分频器,支持实时调整计数时钟分频。
- 灵活的计数时钟源选择。
- 通道可用于输入捕捉、输出比较、PWM(边缘或中心对齐模式)、单脉冲输出。
- 支持与其他定时器级联。

13.2 结构框图

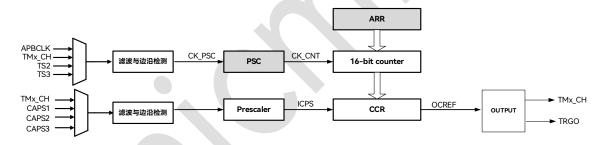


图 13-1: 结构框图

13.3 寄存器描述

● GTIMERO 寄存器基地址: 0xC900。

● GTIMER1 寄存器基地址: 0xCA00。

● GTIMER2 寄存器基地址: 0xCB00。

表 13-1: 寄存器描述

偏置	名称	描述
0x00	GTIMER_CR0	GTIMER 控制寄存器 0
0x01	GTIMER_CR1	GTIMER 控制寄存器 1
0x02	GTIMER_CR2	GTIMER 控制寄存器 2

偏置	名称	描述
0x03	GTIMER_CR3	GTIMER 控制寄存器 3
0x04	GTIMER_IER	GTIMER 中断使能寄存器
0x05	GTIMER_SR	GTIMER 状态寄存器
0x06	GTIMER_EGR	GTIMER 事件产生寄存器
0x07	GTIMER_CCMR0	GTIMER 捕捉/比较模式寄存器 0
0x08	GTIMER_CCMR1	GTIMER 捕捉/比较模式寄存器 1
0x09	GTIMER_CCER	GTIMER 捕捉/比较使能寄存器
0x0A	GTIMER_CNT0	GTIMER 计数器寄存器 0
0x0B	GTIMER_CNT1	GTIMER 计数器寄存器 1
0x0C	GTIMER_PSC0	GTIMER 预分频寄存器 0
0x0D	GTIMER_PSC1	GTIMER 预分频寄存器 1
0x0E	GTIMER_ARR0	GTIMER 自动重载寄存器 0
0x0F	GTIMER_ARR1	GTIMER 自动重载寄存器 1
0x10	GTIMER_ARR2	GTIMER 自动重载寄存器 2
0x11	GTIMER_ARR3	GTIMER 自动重载寄存器 3
0x12	GTIMER_CCR0	GTIMER 捕捉/比较寄存器 0
0x13	GTIMER_CCR1	GTIMER 捕捉/比较寄存器 1
0x14	GTIMER_CCR2	GTIMER 捕捉/比较寄存器 2
0x15	GTIMER_CCR3	GTIMER 捕捉/比较寄存器 3

13.3.1 GTIMER_CR0 控制寄存器

C900H/CA00H/CB00H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
GTIMER_CR0	MMS	ARPE	CN	1S	CEN_ALL_EN	DIR	ОРМ	CEN			
读/写	读/写	读/写	读/	写	读/写	读/写	读/写	读/写			
复位值	0	0	C)	0	0	0	0			
位编号	位符号	说明									
7	MMS	主机模式选择,用于配置主机模式下向从机发送的同步触发信号 (TRGO) 源: 1: UE (update event) 信号被用作 TRGO; 0: OCxREF 用作 TRGO。									
6		Auto-reload 预装载使能: 0:ARR 寄存器不使能 preload; 1:ARR 寄存器使能 preload。									
5-4	CMS	计数器对齐	模式选择	¥:							

		00: 边沿对齐模式;				
		01:中央对齐模式 1,输出比较中断标志仅在计数器向下计数的过				
		程中置位;				
		10:中央对齐模式 2,输出比较中断标志仅在计数器向上计数的过				
		程中置位;				
		11:中央对齐模式 3,输出比较中断标志在计数器向上向下计数的				
		过程中都会置位。				
		CEN_ALL 使能:				
3		I: 当前 GTIMER 可以被 CEN_ALL 控制;				
		0:当前 GTIMER 对 CEN_ALL 信号无效。				
		计数方向寄存器:				
2	DIR	0: 向上计数;				
2	DIK	1: 向下计数。				
		注意:当定时器配置为中央对齐模式时,此寄存器只读。				
		单脉冲输出模式:				
1	OPM	0:Update Event 发生时计数器不停止;				
		1:Update Event 发生时计数器停止(自动清零 CEN)。				
		计数器使能:				
0	CEN	0: 计数器关闭;				
		1: 计数器使能。				

13.3.2 GTIMER_CR1 控制寄存器

				1	1					
C901H/CA01H/CB01H	Bit7 Bit6		Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
GTIMER_CR1	PWM	S_B_S	SOFT_BK	CEN_ALL	BKE_POL	BKE	PWM_DEAD	PWM_INV		
读/写	读	/写	读/写	写	读/写	读/写	读/写	读/写		
复位值		0	0	0	0	0	0	0		
位编号	位	符号	说明							
7-6	PWM		PWM 刹车触数 00:低电平; 01:高电平; 10/11:高阻料	·	1正向电平》	犬态设置的	'泣:			
5	SOF		软件触发刹车功能设置位: 1:软件触发刹车功能; 0:软件不触发刹车功能。							
4	CEN	_ALL	1: 同时使能(GTIMER0/1	/2,写此位	活, GTI	MER0/1/2 的 (EN 位同时		

		为 1;
		0: 无操作。
		读此位始终为 0。
		刹车信号极性配置:
3	BKE_POL	1: 刹车信号低电平有效;
		0: 刹车信号高电平有效。
		刹车功能使能:
2	BKE	1: 刹车功能使能;
		0: 刹车功能禁止。
		PWM 死区插入功能使能:
1	PWM_DEAD	0: 避免死区功能关闭;
		1: 避免死区功能使能。
		互补 PWM 与原 PWM 差分使能:
0	PWM_INV	0: 互补 PWM 和原 PWM 同相位;
		1:互补 PWM 和原 PWM 反相位。

13.3.3 GTIMER_CR2 控制寄存器

C902H/CA02H/CB02H	Bit7		Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
GTIMER_CR2	-	BRE	AK2_SEL	BREAK1_SEL	PWMN_IDLE	PWMP_IDLE	MOE	PWMN	N_B_S	
读/写	读	ì	卖/写	读/写	读/写	读/写	读/ 写	读/写		
复位值	0		0	0	0	0	0	0		
位编号	位符	号	说明							
7	-		RSV: 未	实现,读为 0						
					的 IO 作为刹车 置的 IO 作为杀	•				
6	BREAK		GTIMER1 IO 引脚刹车源选择: 1: 选择 GTIMER2 配置的 IO 作为刹车源; 0: 不选择 GTIMER2 配置的 IO 作为刹车源。 GTIMER2							

		IO 引脚刹车源选择:
		1:选择 GTIMER1 配置的 IO 作为刹车源;
		0:不选择 GTIMER1 配置的 IO 作为刹车源。
		GTIMER0
		IO 引脚刹车源选择:
		1:选择 GTIMER1 配置的 IO 作为刹车源;
		0:不选择 GTIMER1 配置的 IO 作为刹车源。
		GTIMER1
5	BREAK1_SEL	IO 引脚刹车源选择:
	DIVERNIT_OLL	1:选择 GTIMER0 配置的 IO 作为刹车源;
		0:不选择 GTIMER0 配置的 IO 作为刹车源。
		GTIMER2
		IO 引脚刹车源选择:
		1:选择 GTIMER0 配置的 IO 作为刹车源;
		0:不选择 GTIMER0 配置的 IO 作为刹车源。
		PWM 输出负向电平 IDLE 状态:
4		1: 电平为高电平;
		0: 电平为低电平。
		PWM 输出正向电平 IDLE 状态:
3	PWMP_IDLE	1: 电平为高电平;
		0: 电平为低电平。
		输出使能:
2	MOE	1: 输出总使能;
		0:输出禁止。
		PWM 刹车触发后,PWM 互补电平状态设置位:
1-0	PWMN B S	00: 低电平;
1-0		01: 高电平;
		10/11: 高阻状态。

13.3.4 GTIMER_CR3 控制寄存器

C903H/CA03H/	СВ03Н	Bit7	Bita	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
GTIMER_CF		-			COMP2_BKEN	COMP1_BKEN	COMP0_BKEN				
读/写				读			读/写	读/写	读/写		
复位值				0			0	0	0		
位编号	位	符号	-	兑明							
7-3				RSV: 未§	实现,证	卖为 0					
2	СОМІ	P2_BK	EN	COMP2 作为刹车源使能: 1: 使能 COMP2 作为刹车源; 0: 关闭 COMP2 作为刹车源。							
1	СОМІ	P1_BK	EN	COMP1 作为刹车源使能: 1: 使能 COMP1 作为刹车源; 0: 关闭 COMP1 作为刹车源。							
0	EN	COMP0 作为刹车源使能: 1: 使能 COMP0 作为刹车源; 0: 关闭 COMP0 作为刹车源。									

13.3.5 GTIMER_IER 中断使能寄存器

C904H/CA04H/CB04H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
GTIMER_IER			BKE_IE	CC1IE	UIE			
读/写			读			读/写	读/写	读/写
复位值			0			0	0	0
		_						
位编号	位符号	说明						
7-3		RSV: 未	实现,读	为 0				
2	BKE_IE	刹车中断 1: 刹车 ^口 0: 刹车 ^口	中断使能;					
1	CCIE	捕捉/比较 0:禁止抗 1:允许抗						
0	UIE	Update 0:禁止 1:允许(

13.3.6 GTIMER_SR 状态寄存器

C905H/CA05H/CB05H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
GTIMER_SR			-			BKE_F	CCIF	UIF			
读/写			读			读/写	读/写	读/写			
复位值			0			0	0	0			
位编号	位符号	位符号 说明									
7-3		RSV: 未	实现,读	为 0							
2	BKE_F	 刹车中断标志:1: 处于刹车状态;0: 未处于刹车状态;写 1 清 0。									
1	CCIF	捕捉/比较通道中断标志: 如果 CC 通道配置为输出: CCIF 在计数值等于比较值 (CCR) 时置位, 软件写 1 清零。 如果 CC 通道配置为输入: 发生捕捉事件时置位,软件写 1 清零,或者软件读 GTIMER_CCR 自动清零。									
0	UIF				‡置位,软(立,并更新						

13.3.7 GTIMER_EGR 事件产生寄存器

C906H/CA06H/CB06H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
GTIMER_EGR		Y		-				UG		
读/写		读								
复位值		0								
位编号	位符号	说明								
7-1		RSV: 未实现	l,读为 C)						
0	UG	软件 Update 软件置位 UC 器被清零。				•				

13.3.8 GTIMER_CCMR0 捕捉/比较模式寄存器

C907H/CA07H/CB07H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
GTIMER_CCMR0	TFLT	TEDGE	TSS	SEL		-		CCS		
读/写	读/写	读/写	读/	'写		读/写		读/写		
复位值	0	0	()		0		0		
位编号	位符号	说明								
		外部计数源	原滤波使能	:						
7	TFLT	0 无滤波功	力能;							
		1 有滤波功	有滤波功能。							
		计数源边沿	计数源边沿选择:							
6	TEDGE	0 上升沿计	0 上升沿计数;							
		1 下降沿计数。								
		计数源选择位:								
		GTIMER0:	:							
		00: PCLK;								
		01: GTIMER2_TRGO (GTIMER2同步触发信号);								
		10: CLK3	8K_GTIME	ERO (38k	时钟);					
		11: GTIM	ER0_CH(GTIMER0	捕获输入	.),				
		GTIMER1:								
5-4	TSSEL	00: PCLK;								
		00. FCLK, 01: GTIMER0 TRGO (GTIMER0同步触发信号);								
		01: GTIMERO_TRGO (GTIMERO同步触及信号); 10: CLK38K_GTIMER1 (38k时钟);								
		11: GTIM	_).				
		GTIMER2		.0111121(1	\ (car>\car\)	.,, 0				
		00: PCLK								
		01: GTIMER1_TRGO(GTIMER1同步触发信号)								
		10: CLK38K_GTIMER1 (38k时钟)								
		11: GTIM	_			.)				
3-1		RSV: 未实	现,读为	0						
		捕捉/比较	 1 通道选择	 ¥:						
		0: CC 通道配置为输出;								
0	CCS	1: CC 通道	直配置为输	ì入。						

注意: CCS 仅在通道关闭时(CCE=0)可以写。

13.3.9 GTIMER_CCMR1 捕捉/比较模式寄存器

000011/04001		D:: 7	D (D:: 5	5	56	D:: 0	D:: 4	D.:. C			
C908H/CA08H	H/CB08H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
GTIMER_CO	CMR1	CAPCLR	ICPSC		CAPFLT	CAPEDGE		CAPSSEL				
读/写		读/写	读/	读/写 读/写 读/写				读/写				
复位值	Ī	0	0		0	0		0				
位编号	位编号 位符号											
			说明 首次捕捉》	 青零控制	 位:							
7	С	APCLR	0: 计数器									
					·	直到捕捉到	第一个沿	开始计数	ζ.			
			捕捉源预定	 分频位:								
			00: 除1;									
6-5	1	CPSC	01: 除2;									
			10: 除4;									
			11: 除8。)								
			输入捕捉的	信号滤波	使能:							
4	C	APFLT	0: 无输入滤波功能;									
			1: 有输入滤波功能。									
			捕获沿触发控制位:									
3-2	CA	APEDGE	00: 上升沿触发;									
J-Z	CF	AT EDGE	01: 下降沿触发;									
			10/11: 上升或下降沿触发。									
			捕捉源选择位:									
			GTIMER0									
			00: GTIMER0_CH;									
			01: UAR									
			10: CLK3									
				11: LPTIMER_LPOUT0。								
1-0	CA	APSSEL	GTIMER1	:								

G	T	II	М	E	R	1	:

00: GTIMER1_CH;

01: UART1_RX;

10: CLK38K_GTIMER1;11: LPTIMER_LPOUT1。

GTIMER2:

	00:	GTIMER2_CH;
	01:	UART2_RX;
	10:	CLK38K_GTIMER2;
	11:	UART3_RX。

13.3.10 GTIMER_CCER 捕捉/比较使能寄存器

C909H/CA09H/CB09H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
GTIMER_CCER		-								
读/写		读								
复位值			()		1	0	0		

位编号	位符号	说明
7-3		RSV: 未实现, 读为 0。
		CC 通道配置为输出时极性:
1	ССР	0: CNT <ccr ocxref="" td="" 同相);<="" 时输出高电平(cc="" 通道输出与=""></ccr>
		1: CNT>CCR 时输出高电平(CC 通道输出与 OCxREF 反相)。
		捕捉/比较输出使能:
		CC 通道配置为输出时:
		0: OC 无输出;
0	CCE	1: OC 有输出。
		CC 通道配置为输入时:
		0: 关闭捕捉功能;
		1: 使能捕捉功能。

13.3.11 GTIMER_CNT0 计数器寄存器

C90AH/CA0AH/CB0AH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
GTIMER_CNT0		CNT[7:0]									
读/写		读/写									
复位值		0									
位编号	位符号	计号 说明									
7-0	CNT	计数值 C	NT[7:0]								

13.3.12 GTIMER_CNT1 计数器寄存器

C90BH/CA0BH/CB0BH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
GTIMER_CNT1		CNT[15:8]									
读/写		读/写									
复位值		0									
		1									
位编号	位符号	说明									
7-0	CNT	计数值 CI	十数值 CNT[15:8]								

13.3.13 GTIMER_PSCO 预分频寄存器

C90CH/CA0CH/CB0CH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
GTIMER_PSC0		PSC[7:0]									
读/写		读/写									
复位值		0									
		1									
位编号	位符号	说明									
7.0	DCC	计数器时钟(CK_CNT)预分频值:									
7-0	PSC	f _{CK_CNT} =f _{CI}	_{K_PSC} /(PSC	[15:0]+1)						

注意: 不使能 preload,依旧要等到有 update 事件才能使 psc 值载入 shadow 寄存器。

13.3.14 GTIMER_PSC1 预分频寄存器

C90DH/CA0DH/CB0DH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
GTIMER_PSC1		PSC[15:8]									
读/写		读/写									
复位值		0									
位编号	位符号	说明									
7-0	PSC	计数器时钟(CK_CNT)预分频值:									
/-0	P3C	f _{CK_CNT} =f _{CI}	K_PSC/(PSC	[15:0]+1)						

注: 不使能 preload,依旧要等到有 update 事件才能使 psc 值载入 shadow 寄存器。

13.3.15 GTIMER_ARRO 自动重载(auto-reload)寄存器

C90EH/CA0EH/CB0	0EH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
GTIMER_ARR0					ARF	R[7:0]					
读/写					读	/写					
复位值			0								
位编号	位	符号	说明								
			计数溢出	时的自动	重载值。						
7-0	Þ	ARR	这是一个 preload 寄存器,在 update 事件发生时其内容被载入								
			shadow 됨	寄存器。							

13.3.16GTIMER_ARR1 自动重载(auto-reload)寄存器

C90FH/CA0FH/CB0FH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
GTIMER_ARR1		ARR[15:8]									
读/写				读	/写						
复位值		0									
位编号	位符号	说明									
		计数溢出	时的自动:	重载值。							
7-0	ARR	这是一个	preload	寄存器,	在 upd	ate 事件	发生时其	内容被载入			
		shadow ?	寄存器。								

13.3.17 GTIMER_ARR2 自动重载(auto-reload)寄存器

C910H/CA10H/CB10H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
GTIMER_ARR2		ARRN[7:0]									
读/写		读/写									
复位值		0									
位编号	位符号	说明									
		计数溢出	时的自动:	重载值,3	互补计数器	.					
7-0	ARRN	ARRN 这是一个 preload 寄存器,在 update 事件发生时其内容被载入									
		shadow i	寄存器。								

13.3.18 GTIMER_ARR3 自动重载(auto-reload)寄存器

C911H/CA11H/CB11H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
GTIMER_ARR3		ARRN[15:8]									
读/写		读/写									
复位值		0									
位编号	位符号	说明									
		计数溢出	时的自动	重载值,互	互补计数器	Į To					
7-0	ARRN										
		shadow ?	寄存器。								

13.3.19 GTIMER_CCR0 捕捉/比较寄存器

C912H/CA12H/CB12H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
GTIMER_CCR0		CCR[7:0]								
读/写		读/写								
复位值		0								
位编号	位符号	说明								
7-0	CCR	捕捉/比较通如果通道配置这是一个 pro比较产生 OC如果通道配置	置为输出: eload 寄存 分输出。 置为输入:							

13.3.20 GTIMER_CCR1 捕捉/比较寄存器

C913H/CA13H/CB13H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
GTIMER_CCR1		CCR[15:8]								
读/写		读/写								
复位值		0								
	位符号	;** op								
江州与	1419.2	远明								
7-0	CCD	捕捉/比较通道寄存器								
7-0	CCR	如果通道配置	置为输出:							

	这是一个 preload 寄存器, 其内容被载入 shadow 寄存器后用于与计数器
	比较产生 OC 输出。
	如果通道配置为输入:
	CCR 保存最近一次输入捕捉事件发生时的计数器值,此时 CCR 为只读。

13.3.21 GTIMER_CCR2 捕捉/比较寄存器

C914H/CA14H/CB14H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
GTIMER_CCR2		CCRN[7:0]								
读/写		读/写								
复位值 0										
位编号	位符号	说明								
		捕捉/比较通道寄存器,互补计数器								
7-0	CCRN	如果通道配置为输出:								
		这是一个 preload 寄存器,其内容被载入 shadow 寄存器后用于与计								
		数器比较产生 OC 输出								

13.3.22 GTIMER_CCR3 捕捉/比较寄存器

C915H/CA15H/CB15H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
GTIMER_CCR3		CCRN[15:8]								
读/写			读/写							
复位值	0									
位编号	位符号	说明								
		捕捉/比较通道寄存器,互补计数器								
7-0	CCRN	如果通道配置为输出:								
		这是一个 preload 寄存器,其内容被载入 shadow 寄存器后用于与计								
		数器比较产生 OC 输出								

13.4 使用说明

13.4.1 Counter 工作模式

计数方向:

1. 往上计数

在往上计数模式中,counter 从 0 计数到自动重载值,然后重新到 0 开始计数,并产生中断。此时,UEV 事件发生。当 UEV 事件发生时,芯片内部加载寄存器才会被更新。

2. 往下计数

在往下计数模式中,counter 从自动重载值计数到 0,然后重新到自动重载值开始计数,并产生中断。此时,UEV 事件发生。当 UEV 事件发生时,芯片内部加载寄存器才会被更新。

- 3. 中心对齐模式(上下计数)
 - 在中心对齐模式中, counter 从 0 计数到自动重载值-1, 产生中断; 然后又从自动重载值计数到 1, 产生中断; 然后又从 0 开始计数。
 - 当 counter 处于中心对齐模式时,DIR 寄存器无效。
 - 每次向上溢出和向下溢出时,UEV 事件发生。当 UEV 事件发生时,芯片内部加载寄存器才会被更新。

13.4.2 输入捕获模式

在输入捕获模式中,当在相应的 ICx 信号出现触发沿的时候,捕捉寄存器(CCR)会把当时的 counter 值保存下来。当一次捕获发生后,相应的中断标志被置位,同时产生一次捕获中断。CCxIF 由软件清 0。触发变化沿可以由寄存器控制是上升沿或下降沿。捕捉源可以选择滤波或不滤波。

13.4.3 PWM 模式

PWM 模式可以产生波形,其频率取决于 ARR 寄存器和 PSC,而占空比取决于 CCR 寄存器。

在向上计数时, OCxREF 在 CNT<CCR 时置高, 否则置低; 在向下计数时, OCxREF 在 CNT>CCR 时置低, 否则置高。

● PWM 边缘对齐模式

在向上计数的情况下,配置为 PWM 模式 1, CCP 配置为 0 时, OCxREF 信号在 CNT<CCR 为高电平,否则为低电平。如果 CCR 值大于 ARR 值,则 OCxREF 被固定为 1; 如果 CCR 为 0 则 OCxREF 被固定为 0。

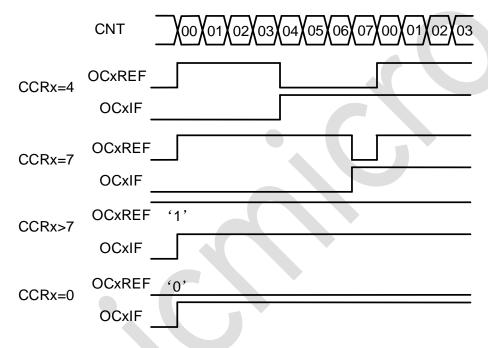


图 13-2: 边沿对齐的 PWM 波形 (ARR=7)

● PWM 中央对齐模式

OCxREF 电平定义与边缘对齐模式相同。下图是一个示例:

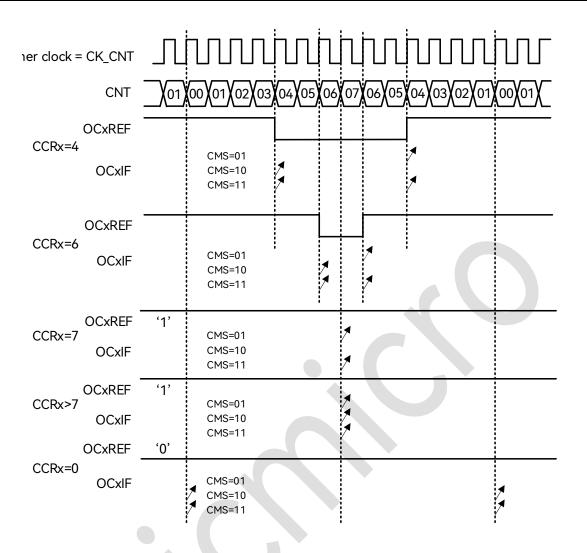


图 13-3: 中央对齐的 PWM 波形 (APR=7)

在使能死区互补功能以后, PWM 输出信号频率取决于 ARR 寄存器和 PSC 寄存器。ARR 寄存器 里的 ARR 和 ARRN 数值的较大值决定计数值的最大值。而占空比取决于 CCR 寄存器。

OCxREF 输出信号如下:

- 1. 边沿对齐向下计数 (DIR=1) 时,当 (MAX(ARR,ARRN) ARR) <= CNT <= CCR 时,OCxREF 输出高电平;否则为低电平。
- 2. 边沿对齐向上计数(DIR=0)时,当 CNT <CCR 或者 CNT > ARR 或者软件写 UG 时,OCxREF输出高电平;否则为低电平。
- 3. 中心对齐计数时,在向下计数(DIR=1)中,CNT<=CCR 时,或在向上计数(DIR=0)中,CNT<CCR 时,OCxREF 输出高电平;否则为低电平。
- 4. 当 MIN(CCR, CCRN) = MAX(ARR, ARRN)时,若在边沿对齐向上计数模式中,当 CNT=ARR 时,

- OCxREF 输出低电平; 否则为高电平。
- 5. 当 MIN(CCR, CCRN) > MAX(ARR, ARRN)时, OCxREF 总是输出高电平。

6. 当 MIN(CCR, CCRN) = 0 时,若在边沿对齐向下计数模式中,OCxREF 输出情况同(1);否则为低电平。

OCxREFn 输出信号如下:

- 1. 边沿对齐向下计数 (DIR=1) 时, 当 (MAX(ARR,ARRN) ARRN) <= CNT <= CCRN 时, OCxREFn 输出高电平; 否则为低电平。
- 2. 边沿对齐向上计数 (DIR=0) 时, 当 CNT < CCRN 或者 CNT > ARRN 或者软件写 UG 时, OCxREFn 输出高电平; 否则为低电平。
- 3. 中心对齐计数时,在向下计数(DIR=1)中,CNT <=CCRN 时,或在向上计数(DIR=0)中,CNT <CCRN 时,OCxREFn 输出高电平;否则为低电平。
- 4. 当 MIN(CCR, CCRN) = MAX(ARR, ARRN)时, 若在边沿对齐向上计数模式中, 当 CNT=ARRN 时, OCxREFn 输出低电平: 否则为高电平。
- 5. 当 MIN(CCR, CCRN) > MAX(ARR, ARRN)时, OCxREFn 总是输出高电平。
- 6. 当 MIN(CCR, CCRN) = 0 时,若在边沿对齐向下计数模式中,OCxREFn 输出情况同(1);否则为低电平。

13.4.4 刹车功能

PWM 波形输出可通过软件或硬件方式触发停止(刹车),软件触发可写 SOFT_BK 位,硬件触发可选择外部 IO 进行触发刹车。PWM 输出被刹车信号触发停止后,若要重新开始输出,需先清除 BKE F 位标志,再使能 MOE 位恢复 PWM 输出。

13.5 使用流程

13.5.1 普通定时器

- 1. 配置 PCLK1, PRESET1, 使能 GTIMER, 复位释放。
- 2. 配置 GTIMER_PSC,设置重载值。
- 3. 配置 GTIMER_ARR,设置预分频值。
- 4. 配置 GTIMER_EGR, 产生 UE 事件, 将 PSC 的值立即载入 shadow 寄存器。
- 5. 清除 UE 产生的中断标志位。
- 6. 配置 GTIMER_CRO, 使能 GTIMER 计数。

13.5.2 PWM 输出

- 1. 根据 IO 复用关系,将 IO 复用为 GTIMER_CH 和 GTIMER_CHN。
- 2. 配置 PCLK1, PRESET1, 使能 GTIMER, 复位释放。
- 3. 配置 GTIMER_PSC,设置重载值。
- 4. 配置 GTIMER_ARR,设置预分频值。
- 5. 配置 GTIMER_CCR,设置比较值。
- 6. 若想输出互补 PWM,则设置 GTIMER_ARRN 和 GTIMER_CCRN。
- 7. 配置 GTIMER_EGR, 产生 UE 事件, 将 PSC 的值立即载入 shadow 寄存器。
- 8. 清除 UE 产生的中断标志位。
- 9. 配置 GTIMER_CCER, OC 有输出。
- 10. 配置 GTIMER_CR2, 使能总输出。
- 11. 配置 GTIMER_CRO, 使能 GTIMER 计数。

13.5.3 输入捕获

- 1. 根据 IO 复用关系,将 IO 复用为 GTIMER_CH。
- 2. 配置 PCLK1, PRESET1, 使能 GTIMER, 复位释放。
- 3. 配置 GTIMER PSC,设置重载值。
- 4. 配置 GTIMER_ARR,设置预分频值。
- 5. 配置 GTIMER_CCMR1, CC 通道配置为输入、选择捕捉源、捕捉源预分频和捕获沿触发控制。
- 6. 若使用捕捉中断,则需要配置 GTIMERO_IER 为比较/捕捉中断。
- 7. 配置 GTIMER_CCER, 使能捕捉功能。
- 8. 配置 GTIMER_CRO, 使能 GTIMER 计数。

13.5.4 刹车功能

- 1. 根据 IO 复用关系,将 IO 复用为 GTIMER_BKE。
- 2. 配置 PCLK1, PRESET1, 使能 GTIMER, 复位释放。
- 3. 配置 GTIMER_CR1, PWM 刹车触发后, PWM 正向电平状态设置位。
- 4. 配置 GTIMERO_CR1, 选择刹车信号极性。
- 5. 若使用刹车中断,则需要配置 GTIMER_IER 为刹车中断。
- 6. 配置 GTIMERO_CR1, 使能刹车功能。
- 7. 配置 GTIMERO_CRO, 使能 GTIMER 计数。

14 I2C

14.1 概述

I2C 总线接口连接微控制器和串行 I2C 总线。I2C 模块接收和发送数据,并将数据从串行转换成并行,或并行转换成串行。I2C 模块通过数据引脚 SDA 和时钟引脚 SCL 连接到 I2C 总线,控制所有 I2C 总线规定的时序。本模块支持主模式和从模式。

14.2 主要特性

- I2C 主设备功能。
- I2C 从设备功能。
- 可编程的 I2C 从设备地址。
- SCL 为低时 SDA 的跳变次数检测。
- 可编程的 NACK/ACK 回复。
- 输入 SCL 总线滤波功能。
- 支持 Standard/Fast/HS 模式。
- 支持 7-bit 设备地址。
- 支持多主模式。

14.3 寄存器描述

I2C 寄存器基地址: 0xCC00。

表 14-1: 寄存器列表

偏置	名称	描述
0x00	I2C_SLAVE_ADDR1	I2C设备地址寄存器1
0x01	I2C_CLK_DIV	I2C的SCL速率分频

0x02	I2C_CR0	控制寄存器0
0x03	I2C_CR1	控制寄存器1
0x04	I2C_SR0	状态寄存器0
0x05	I2C_SR1	状态寄存器1
0x06	I2C_DR	数据寄存器
0x07	I2C_SLAVE_ADDR2	I2C设备地址寄存器2

14.3.1 I2C_SLAVE_ADDR1 从设备地址寄存器 1

CC00H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
I2C_SLAVE_ADDR1		ADD1[7:1]							
读/写				读/写				读	
复位值				0				0	
位编号	位符	·号	说明						
7-1	ADD1	[7:1]	地址的 7~	1位					
0	RS	V	保留						

14.3.2 I2C_CLK_DIV 时钟分频寄存器

CC01H	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0									
I2C_CLK_D	IV		I2C_CLK_DIV								
读/写	读/写										
复位值		0									
位编号	位符号	位符号 说明									
7.0	ISC CLK DIV	, SCL 5.	SCL 分频值,通过配置该寄存器设置 I2C 的传输速率。								
7-0	I2C_CLK_DIV	$f_{SCL} =$	f _{SCL} =(F 系统时钟)/(4*(DIV 寄存器值+1))。								

14.3.3 I2C_CR0 控制寄存器 0

CC02H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
I2C_CR0	MAAS1_INT_En	MIEN	RSTA	TACK	MTX	MSTA	RSV	MEN
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
		MAAS1(接收到的设备地址与从设备地址寄存器1相符)中断使能:
7	MAAS1_INT_En	0: MAAS1中断不使能;
		1: MAAS1 中断使能。
		MTF(字节数据(包括地址)传输完成)中断使能:
6	MIEN	0:MTF中断不使能;
		1: MTF 中断使能。
		RSTA产生位:
5	RSTA	0:不产生Repeat Start条件;
		1:写该位后,在发送或接收完一个字节后,产生一个 Start。
		传输应答位/STOP条件位:
		对于主模式:
		0:接收一字节后,在应答周期产生ACK;
4		1:主设备在发送完当前字节后,将产生一个STOP。
		对于从模式∶
		0:接收一字节后,在应答周期产生ACK;
		1:接收完一字节后,在应答周期产生 NACK。
		0: 设备作为接收器;
3	MTX	1: 设备作为发送器。
	MIX	当作为从设备时,处理器应该查询 I2C_SR 的 SRW 位,判断是作为发送器还
		是接收器,然后设置与之匹配的 MTX 位。
		主从设备选择位,START位:
	MSTA	0: 从模式;
2		1: 主模式。
Z		如果这位从 0 变成 1 时,模块产生一个 START 条件。当 STOP 条件产生时,
		MSTA 将被清零。当从地址匹配(MAAS1 或 MAAS2 为 1)时,MSTA 也被
		清零。
1	HOLD_EN	1:使能此位,在收到地址匹配中断以后,等待 mtf 信号为 1,再写入数据。
0	MEN	0: 设备不使能;
0	MEN	1: 设备使能。

14.3.4 I2C_CR1 控制寄存器 1

СС03Н	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
I2C_CR1	RSV	MTX_ANTO_EN	OD_MODE	RSV	MAAS2_INT_EN	WBT_INT_EN	RXNE_INT_EN	TXE_INT_EN
读/写	读	读/写	读/写	读	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7		保留。
		● 当此模块 SLAVE 模式下,传输数据和地址 SDA 线自动切换。
		● 当此模块 SLAVE 模式下,此位设置为 1,主设备传输完地址信息后,根
6	MTX_ANTO_EN	据总线上的 RW 位,自动切换 SDA 传输方向。
		0: 不使能自动切换功能;
		1: 使能自动切换功能。
		SCL 与 SDA 输出模式选择:
5	OD_MODE	0: push-pull 模式输出;
		1: open-drain 模式输出。
4	RSV	保留。
		MAAS2(接收到的设备地址与从设备地址寄存器 2 相符)中断使能:
3	MAAS2_INT_EN	0:MAAS2 中断不使能;
		1: MAAS2 中断使能。
		WBT(字节传输完成且 TXE 或 RXNE 为 1)中断使能:
2		0: WBT 中断不使能;
		1: WBT 中断使能。
		RXNE(接收时数据寄存器非空)中断使能:
1		0:RXNE 中断不使能;
		1:RXNE 中断使能。
		TXE(发送时数据寄存器空)中断使能:
0		0: TXE 中断不使能;
		1: TXE 中断使能。

14.3.5 I2C_SR0 状态寄存器 0

CC04H	Bit7	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0							
I2C_SR0	MAAS2	MTF MAAS1 MBB RSV SRW MTF_H RACK							
读/写	读/写	读/写	读/写	读	读	读	读/写	读	
复位值	0	0	0	0	0	0	0	1	
位编号	位符号	说明	说明						
		0:设备地址2和接收到的地址不相等;							
7	MAAS2	AAS2 1: 设备地址2和接收到的地址相等。							
		写1清0。							
0:字节传输未完成;									
6	MTF	1:字节传输完成。							

	1					
		当一个字节数据(包括地址)正在传输时,该位为 0;在一个字节传输完				
		后,在第 9 个 SCL 时钟下降沿(ACK 周期)MTF 被置为 1。比 MTF_H 晚				
		半个周期 SCL 周期,写 1 清除。				
		0:设备地址1和接收到的地址不相等;				
5	MAAS1	1: 设备地址1和接收到的地址相等。				
		写1清0。				
4	MBB	0:总线上无数据通信(检测到总线上STOP标志,此位清0);				
4	IMIDD	1:总线上正在进行数据通信(检测到总线上 START 标志,此位清 1)。				
3	RSV	保留。				
		0: 不作为从设备发送器;				
	SRW	1: 作为从设备发送器。				
2		● 当地址匹配后,SRW 指示地址呼叫命令中的 R/W 位,该位仅在如下条				
2		件有效: 一个完整的传输已经发生,没有其他传输被初始化,并且 I2C				
		被配置为从模式,且从地址匹配。				
		● 当接收到 STOP 条件或一个新的 START 条件,该位自动清除。				
		快速字节传输完全完成标志:				
		0:快速字节传输未完成(提早半个SCL时钟);				
1	MTF_H	1:快速字节传输完成。MTF_H在第9个SCL时钟上升沿(ACK周期)产生,				
		比MTF早半个周期。				
		通过对此位写 1 或写 MTF 为 1 清除。				
		应答接收状态位:				
	DACK	0: 最近的发送应答周期接收到应答;				
0	RACK	1:最近的发送应答周期没有接收到应答。				
		只有 START 条件将清除 RACK 位。				

14.3.6 I2C_SR1 状态寄存器 1

CC05H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
I2C_SR1		RSV						TXE
读/写			读			读/写	读/写	读/写
复位值			0			0	0	0
位编号	位符号	位符号 说明						
7-3	RSV	保留。						
	0:字节传输未完成或字节传输完成但TXE,RXNE不为1;							
2	WBT 1:字节传输完成且TXE或RXNE为1。							
		通过读写	数据寄存器に	2C_DR可以	清除该位,也	也可以写1流	青0。	

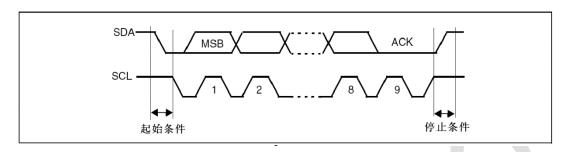
		0:接收时数据寄存器空;
1	RXNE	1:接收时数据寄存器非空。
		硬件置位,通过读数据寄存器I2C_DR可以清除该位,写1清0。
		0: 发送时数据寄存器非空;
0	TXE	1: 发送时数据寄存器空。
		硬件置位,通过写数据寄存器 I2C_DR 可以清除该位,写 1 清 0。

14.3.7 I2C_DR 数据寄存器

CC06H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
I2C_DR		I2CDR							
读/写		读/写							
复位值		0							
位编号	位符号	位符号 说明							
7-0	I2CDR	CDR I2C 数据寄存器值。							

14.3.8 I2C_SLAVE_ADDR2 从设备地址寄存器 2

CC07F	ł	Bit7	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1						Bit0
I2C_SLAVE_A	ADDR2		ADD2[7:1] A						ADDR2_EN
读/写				读/写					
复位值	i ,			0					
位编号	位	拉符号	说明						
7-1	AD	D2[7:1]	地址的 7·	也址的 7~1 位。					
0 ADDD2 FN		0: SLAVE_ADDR2地址匹配不使能;							
0	ADI	DR2_EN	1: SLAVE_ADDR2 地址匹配使能。						


14.4 功能描述

14.4.1 模式选择

该模块默认为从模式,当软件发起START操作后设备变成主模式。主模式时,I2C接口启动数据传输并产生时钟信号,并可以发出STOP信号停止传输。从模式时,I2C接口能识别它自己的地址

(7位)。数据和地址按8位/字节进行传输,高位在前。

跟在起始条件后的是地址,地址只在主模式发送。在一个字节传输的8个时钟后的第9个时钟期间,接收器必须回送一个应答位(ACK)给发送器。见下图:

14.4.2 I2C 从模式

一旦检测到起始条件,在SDA线上接收到的地址被送到移位寄存器。然后与芯片自己的设备地址相比较,如果地址不匹配I2C将其忽略并等待另一个起始条件。如果地址匹配,则此控制器会检测当前操作是发送还是接收(SRW寄存器),I2C接口进行如下操作:

● 从发送器:

发送器将字节从数据寄存器 load 到内部移位寄存器发送到 SDA 线上,并产生数据寄存器空标志 TXE,软件需要更新数据寄存器来清除 TXE 标志。

当收到应答脉冲后,如果在下一个数据发送结束之前新数据仍然没有被写进数据寄存器,即 TXE 仍然为 1,则字节等待标志位(WBT)被置 1,这时 I2C 接口保持 SCL 为低以等待新的数据被写进数据寄存器。

图 14-1: 7 位从发送器的传送图

说明:S=Start(起始条件),P=Stop(停止条件),A=响应,NA=非响应。

: From master to slave

: From slave to master

● 从接收器:

在接收到数据后,从接收器将通过内部移位寄存器从SDA线接收到的字节latch到数据寄存器,

并产生数据寄存器非空标志 RXNE,软件需要读出数据寄存器的值来清除 RXNE 标志。

I2C 接口在接收到每个字节后都产生一个应答脉冲。

如果在接收新数据前数据寄存器的值未被读出,即 RXNE 仍然为 1,则字节等待标志位 (WBT) 被置 1. 这时 I2C 接口保持 SCL 为低以等待数据寄存器的值被读出。

S 地址 A 数据1 A 数据2 A … 数据N A P

图 14-2: 7位从接收器的传送图

说明: S=Start (起始条件), P=Stop (停止条件), A=响应, NA=非响应。

● 关闭从通信

在传输完最后一个数据字节后,主设备发出一个停止操作,I2C接口检测到这一条件时释放 SCL和 SDA 线。

14.4.3 I2C 主模式

在主模式时,I2C接口启动数据传输并产生时钟信号。串行数据传输总是以起始条件开始并以 停止条件结束。当通过START位在总线上发起起始操作,设备就进入了主模式。

以下是主模式的操作顺序:

- 1. 配置时钟控制寄存器。
- 2. 配置数据寄存器 (内部为从设备的地址和读写控制位)。
- 3. 配置控制寄存器的MSTA位为1,产生起始条件。

● 主发送器:

发送了地址后,主设备通过内部移位寄存器将字节从数据寄存器 load 到 SDA 线上,并产生数据寄存器空标志 TXE,软件需要更新数据寄存器来清除 TEX 标志。

收到应答脉冲后确认新的数据已经发送到数据寄存器。如果在下一个数据发送结束之前新数据仍然没有被写进数据寄存器,即 TXE 仍然为 1,则字节等待标志位(WBT)被置 1,这时 I2C 接口保持 SCL 为低以等待新的数据被写进数据寄存器。

主设备发出STOP信号产生停止条件。

| S | 地址 | A | 数据1 | A | 数据2 | A | | 数据N | A | P

图 14-3: 7位主发送器的传送图

说明: S=Start (起始条件), P=Stop (停止条件), A=响应, NA=非响应

● 主接收器

发送了地址后, I2C 接口从 SDA 线接收数据字节, 并通过内部移位寄存器 latch 到数据寄存器, 产生数据寄存器非空标志 RXNE, 软件需要读出数据寄存器的值来清除 RXNE 标志。

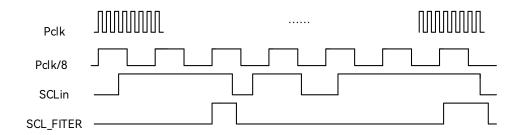
如果在接收新数据前数据寄存器的值未被读出,即 RXNE 仍然为 1,则字节等待标志位 (WBT) 被置 1,这时 I2C 接口保持 SCL 为低以等待数据寄存器的值被读出。

在每接收一个字节后发出一个应答脉冲并确认数据寄存器里的值已经被取走。

主设备在从设备接收到最后一个字节后发送一个 NACK。收到 NACK 后,从设备释放 SCL 线和 SDA 线的控制。主设备就可以发送一个停止/重开始条件。

图 14-4: 7位主接收器的传送图

时钟延长:


- 发送模式: 当数据寄存器里的数据没有被更新时,把 SCL 拉低以等待新的数据写入。
- 接收模式: 当数据寄存器里的数据没有被读走时, 把 SCL 拉低以等待旧的数据被读走。

14.4.4 SCL 总线滤波算法 0

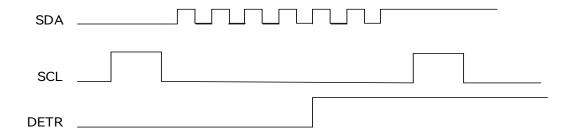
当SCL_FITER_SEL为0,并且I2C_FILTER寄存器的值为0时,表示SCL没有滤波功能。不为0时,滤波时间为t_{cntc}* I2C_FILTER。其中t_{cntc}为pclk的8分频时钟周期。

例:

I2C_FILTER=2时,SCL必须采样到连续两个t_{cntc}宽度的高电平才能输出高电平,宽度小于两个t_{cntc}的脉冲被认为是干扰毛刺而被过滤掉:

注意:

- 在使用过程中,设置SDA_IN_DELAY与SCL_FITER的值相同,SDA信号与SCL信号在经过滤波后,将保持输入时的相位。
- 在通信过程中,SCL滤波功能只滤低于t_{cntc}*I2C_FILTER时间的高电平,低电平不滤波;非通信过程中,SCL滤波功能只滤低于t_{cntc}*I2C_FILTER时间的低电平,高电平不滤波;SCL滤波功能的电平会根据START位自动切换。


14.4.5 SCL 总线滤波算法 1

当SCL_FITER_SEL为1时,表示选择SCL滤波1功能。滤的毛刺的最大宽度为Tfclk x SWIDTH_THOLD。FREEZE_THOLD为滤波计数的上限值,使用SCL滤波1算法时,注意 SWIDTH_THOLD < FREEZE_THOLD。同算法0一样,可使用SDA_IN_DELAY来延时SDA信号。

14.4.6 SCL 为低时检测 SDA 的跳变

当I2C_DET寄存器值为0时,表示不使能检测功能;为其他值时表示使能检测功能,并当SCL为低电平且检测到SDA的上升沿跳变次数大于I2C_DET寄存器的值时,把I2C_SR寄存器的DETR位置1。例:

当I2C_DET=5时,在SCL低电平时,内部计数器开始工作,当检测到SDA上升沿跳变累计大于等于5次时,DETR=1;当SCL变成高电平时,内部计数器清零,等待SCL下个低电平到来时再开始计数。如下图所示:

14.5 使用流程

14.5.1 初始化程序

- 1. 配置 PCLK0、PRESETO, 使能 I2C, 复位释放。
- 2. 根据 IO 复用关系,将 IO 复用为 I2C_SDA, I2C_SCL,配置 PxPUN,使能内部上拉电阻。
- 3. 配置 I2C CR1, 使能开漏模式。
- 4. 配置 I2C_CLK_DIV 寄存器的值确定 I2C 传输速率。
- 5. 若作为从机时,配置 REG_I2C_CR1, SLAVE 模式下自动切换 SDA 传输方向,配置 REG_I2C_CR0, hold_en 使能。
- 6. 配置 I2C_CRO, 使能 I2C。

14.5.2 作为主发送器

- 1. 把 I2C 要访问的 SLAVE 的 7 位地址写入 I2C_DR 寄存器中。
- 2. 写 I2C_CRO 寄存器的 MTX, MEN, MSTA 为 1, 发起 START 条件。
- 3. 读到 TXE 为 1 时, 可以向 I2C_DR 寄存器中写入第一个要发送的字节, 同时硬件会清除 TXE 位。
- 4. 等待 MTF 标志, 判断是否收到 ACK 后, 表示从机正确。如果收到 NAK, 硬件会自动发出 STOP 位, 并释放总线, 软件等待 MBB 为 0 后退出。
- 5. 重复3-4操作。
- 6. 向 I2C_DR 写完最后一个字节后,等到倒数第二个字节发送完成(MTF==1),写 I2C_CR 寄存器的 TACK 为 1 表示发送即将结束。如果需要产生 Restart 操作,则在此写 RSTA 为 1。

7. 最后一个字节发送完成后,如果 RSTA 为 1,则发起 Restart 标志,并继续发送数据,如果 RSTA 为 0,硬件会自动产生 STOP 条件,软件等待 MBB 为 0 后退出。

注意: 以上是主发送器标准发送流程,即没有出现拉时钟的情况,若出现拉时钟(WBT==1) 软件要立刻处理,否则 SCL 时钟会停止。

14.5.3 作为主接收器

- 把 I2C 要访问的 SLAVE 的 7 位地址和 1bit 的 1 写入 I2C DR 寄存器中、表示作为接收器。
- 2. 写 I2C_CR 寄存器的 MTX, MEN, MSTA 为 1, 发起 START 条件。
- 3. 等待 MTF 标志, 判断是否收到 ACK 后, 表示从机正确。如果收到 NAK, 主机会自动发出 STOP 位, 并释放总线, 软件等待 MBB 为 0 后退出。
- 4. 读到 RXNE 为 1 时,处理器需读取 I2C_DR 寄存器中接收到的字节,同时硬件会清除 RXNE 位。 等待下一个字节的接收结束。
- 5. 等待 MTF 标志、并软件清除 (不清软件流程也能继续)。
- 6. 重复 4-5 操作。
- 7. 当倒数第二个字节接收完成,且发送完 ACK 信号后(即倒数第二个 MTF 标志),主机写 I2C_CR 的 TACK 为 1 表示下一个要接收的字节为最后一个字节。
- 8. 最后一个字节接收完成后硬件自动发出 NACK 信号并产生 STOP 条件,软件等待 MBB 为 0 后退出。

注意: 以上是主接收器标准接收流程,即没有出现拉时钟的情况,若出现拉时钟(WBT==1)软件要立刻处理,否则 SCL 时钟会停止。

14.5.4 作为从发送器

- 1. 向 I2C_SLAVE_ADDR1 寄存器或 I2C_SLAVE_ADDR2 寄存器写入 7 位地址作为自己在从机状态下被寻址的地址。
- 2. 写 I2C_CR 寄存器的 MEN 为 1, 使能 I2C 模块。

- 3. 等待 MAAS1 或 MASS2 (ADDR2_EN = 1) 标志是否有效。地址匹配无效则重复 3。
- 4. 地址匹配有效, 判断 SRW 位是否为 1。为 0 表示从接收, 为 1 表示从发送。
- 5. 等待字节传输完成标志 (MTF)。
- 6. 写第一个要发送的数据给 I2C DR、写 I2C CR 寄存器的 MTX 为 1、表示作为从发送器。
- 7. 读到 TXE 为 1 时, 可以向 I2C_DR 寄存器中写入第二个要发送的字节, 同时硬件会清除 TXE 位。
- 8. 等待 MTF 标志、判断是否收到 ACK 后、表示主机正确。
- 9. 重复 7—8,当收到主机发来的 NACK 信号或者 STOP 后,I2C 模块释放总线。软件等待 MBB 为 0 后退出。

14.5.5 作为从接收器

- 1. 向 I2C_SLAVE_ADDR1 寄存器或 I2C_SLAVE_ADDR2 寄存器写入 7 位地址作为自己在从机状态下被寻址的地址。
- 2. 写 I2C CR 寄存器的 MEN 为 1, 使能 I2C 模块。
- 3. 等待 MAAS1 或 MASS2 (ADDR2 EN = 1) 标志是否有效。地址匹配无效则重复 3。
- 4. 地址匹配有效, 判断 SRW 位是否为 1。为 0 表示从接收, 为 1 表示从发送。
- 5. 等待字节传输完成标志 (MTF)。
- 6. 等到读取 RXNE 为 1 时, 处理器需读取 I2C_DR 寄存器中接收到的字节, 同时硬件会清除 RXNE 位。等待下一个字节的接收结束。
- 7. 等待 MTF 标志, 并软件清除 (不清软件流程也能继续)。
- 8. 重复 6-7 操作,接收到 stop 信号后停止。
- 9. I2C 也可以在一个字节接收完成,并发送完成(即 MTF==1)。当写 I2C_CR 寄存器的 TACK 为 1时,则会在下一个字节接收完成后发送 NACK 信号给主机。软件等待 MBB 为 0 后退出。
 - 注意: I2C 默认的 IO 为 P04、P10, 若要复用其他 IO 为 I2C 功能时, 需要先将 P04、P10 配为
- 0, 再复用其他 IO 才有效。

15 ADC (模/数转换器)

15.1 主要特性

- 12 位分辨率。
- 参考电压可选择 VDDA 或外接 VREF。
- 最多可支持 8 路模拟通道输入,通道 0~6 为外部输入,通道 7 输入来源固定为内部 LDO
- 1Msps 采样速率。
- ADC 电压基准可以选择 VDDH 或者外接 VREF 作为 ADC 电源基准源(当配置为 1 时, P2_5 端口将作为外部基准输入)。

15.2 寄存器描述

表 15-1: 寄存器列表

地址	名称	描述
93H	ADC_IER	中断使能寄存器
ACH	ADC_GCR0	控制使能寄存器
ADH	ADC_GCR1	掉电使能寄存器
В4Н	ADC_GCR2	配置寄存器
В5Н	ADC_GCR3	采样寄存器
В6Н	ADC_DR0	数据低位寄存器
В7Н	ADC_DR1	数据高位寄存器
F5H	ADC_HL	通道设置寄存器
F6H	ADC_CSTAT	启动寄存器
F7H	ADC_SPW	采样时钟脉冲宽度配置寄存器
FDH	ADC_VREF	电压基准源选择寄存器
FEH	ADC_CDR0	分频寄存器
FFH	ADC_CDR1	分频寄存器

15.2.1 ADC_IER 中断使能寄存器

93H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADC_IER	-	_	-	-	-	-	-	RXINTEN
读/写	读	读	读	读	读	读	读	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						

位编号	位符号	说明
7-1	-	_
0	RXINTEN	接收器 BUF 存有效数据中断使能位 1:启用中断 0:未启用中断

15.2.2 ADC_GCR0 控制使能寄存器

ACH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADC_GCR0	-	ADCCLKSEL	ADCRCEN	-	-	1	ADCCUNSET	ADCEN
读/写	读	读/写	读/写	读	读	读	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	-	_
		ADC 时钟源选择信号:
6	ADCCLKSEL	0: 内部时钟分频器产生的时钟;
		1: 系统时钟发生器产生的时钟(与之反相)。
		ADC 数据寄存器(ADCDRx)读清除使能:
5	ADCRCEN	0:禁止读取 ADC 数据寄存器的清除;
		1: 使能读取清除 ADC 数据寄存器。
4-2	_	_
		连续模式设置位:
1	ADCCUNSET	1:ADC 工作在连续模式;
		0:ADC 工作在单次模式。
		ADC 控制器使能信号:
0	ADCEN	0:模块禁用;
		1: 模块启用。

15.2.3 ADC_GCR1 掉电使能寄存器

ADH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
ADC_GCR1	-	-	-	-	-	ADCSTEN	ADCRST	ADCPDEN	
读/写	读	读	读	读	读	读/写	读/写	读/写	
复位值	0	0	0	0	0	0	1	1	
位编号	位符号	说明	治明						
7-3	-	_							
2	ADCSTEN	具有从高到	ADC 转换启动使能信号。当信号具有从低到高的转换时,ADC 转换开始。当信号具有从高到低的转换时,ADC 转换操作完成。连续模式下,此位自动置位。当ADC_EN=0 时,它将被清除。默认值:0						
		ADC 内部数	字逻辑复位	信号。					
1	ADCRST	1: SAR AD	C 复位						

15.2.4 ADC_GCR2 配置寄存器

0: SAR ADC 释放

ADCPDEN 0: SAR ADC 上电 (power on)

SAR ADC 掉电使能信号。

1: SAR ADC 掉电(power down)

B4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADC_GCR2	-	-	ADC_PS	P1_2_SEL		СН	EN	
读/写	读	读	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-4	1	-
5	ADC_PS	模拟 ADC 配置参数。
4	P1 2 SEL	此位为 1 时,选定 P1_2 作为通道 0 的采样通道; 此位为 0 时,选定 P1_4 作为通道 0 的采样通道。
3-0	CHEN	启用相关 ADC 通道进行模数转换。默认值:0。 0001:通道 0 0010:通道 1 0011:通道 2 0100:通道 3

0

0101: 通道 4
0110: 通道 5
0111: 通道 6
1000: 通道 7
0000: 保留

15.2.5 ADC_GCR3 采样寄存器

В5Н	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
ADC_GCR3	-	-	-	-	-	-	-	SAMPNEG				
读/写	读	读	读	读	读	读	读	读/写				
复位值	0	0	0	0	0	0	0	0				
位编号	位符号	说明	兑明									
7-1	-	-										
		ADC 数据在 EOC 信号的边沿采样选择:										
0	CANADNICO	0: ADC 数:	据在 EOC 的]上升沿被采	样;							
U		1:ADC 数据在 EOC 的下降沿被采样。										
		注意:在本芯片设计中此位只能设置为 0。										

15.2.6 ADC_DR0 数据低位寄存器

В6Н	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
ADC_DR0			CHDATAL								
读/写	读	读	读	读	读	读	读	读			
复位值	0	0	0	0	0	0	0	0			
位编号	位符号	说明	说明								
7-0	CHDATAL	A/D 通道接	收数据低位	寄存器。							

15.2.7 ADC_DR1 数据高位寄存器

В7Н	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADC_DR1	-	-	-	-	CHDATAH			
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	-	-
6-4	-	-
3-0	CHDATAH	A/D 通道接收数据高位寄存器。

15.2.8 ADC_HL 通道设置寄存器

F5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADC_HL	-			A	DCHL[6:0]		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7	-	_						
6-0	ADCHL	ADCH[6:0 ADCH[0]: 0: P1_4配 1: P1_4配 ADCH[1]: 0: P1_5配 1: P1_5配 ADCH[2]: 0: P2_0配 1: P2_0配 1: P2_2配 1: P2_2配 ADCH[4]: 0: P2_2配 1: P2_3配 1: P2_3配 1: P2_3配 1: P2_3配 1: P2_3配 1: P2_3配	置为 GPIO 置为 ADC ? 置置 置置 置置 置置 置置 置置 置 置 置 置	功输 功输 功输 功输 功输 功能;。 能;。 能, 能, 。 ;。 ;。				

Ī		
		ADCH[6]:
		0: P2_7 配置为 GPIO 功能;
		1: P2_7 配置为 ADC 输入。

15.2.9 ADC_CSTAT 启动寄存器

		I		li .					
F6H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
ADC_CSTAT	-	-	-	-	-	-	-	RXAVL	
读/写	读	读	读	读	读	读	读	读/写	
复位值	0	0	0	0	0	0	0	0	
位编号	位符号	说明							
7-1	-	-							
0	RXAVL	当接\\ 1:接 0:接 写1消	文器 BUF 非 收器 BUF [;] 收器 BUF [;]		立为 1。				

15.2.10 ADC_SPW 采样时钟脉冲宽度配置寄存器

F7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
ADC_SPW	-	SAMPW							
读/写	读	读	读	读	读	读/写	读/写	读/写	
复位值	0	0	0	0	0	0	1	1	
位编号	位符号	说明							
7-3	-	-							
		采样时钟脱	於冲宽度配	置。					
		注意:							
		在本芯片设计中,此寄存器应该设置大于或等于 3 的值。此寄存器的合法							
2-0	SAMPW	值范围为 3	3~5,超过」	比范围可能	会引起 AD	C 工作不正	工作不正常。		
		3: SAMPCLK 宽为 4 个 ADC_CLK 脉冲信号;							
		4: SAMPCLK 宽为 5 个 ADC_CLK 脉冲信号;							
		5: SAMPCLK 宽为 6 个 ADC_CLK 脉冲信号。							

15.2.11 ADC_VREF 电压基准源选择寄存器

FDH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
ADC_VREF	-	-	ADCS	PEED	-	-	-	VREFSEL		
读/写	_	-	读/写	读/写	_	-	_	读/写		
复位值	-	-	0	0	-	ı	-	0		
位编号	位符号	说明	胡							
7-6	_	_								
5-4	ADCSPEED	ADCSPEED) 选择位,(保留为默认	值 0。					
3-1	_	_			4					
		ADC 电压基	基准选择控 制	割位:						
0	VDEECEI	0: VDDH	作为 ADC 🕫	电压基准源;						
	VREFSEL	1: 外接 VF	REF 作为 AI	DC 电源基准	生源(当配生	置为1时,	P2_5 端口料	条作为外部		
		基准输入)	基准输入)。							

15.2.12 ADC_CDR0 分频寄存器

FEH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
ADC_CDR0			CLKDIV0							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	1	1	1	1	1	1	1	1		
位编号	位符号	说明								
		ADC 内部的	ADC 内部时钟分频倍数。							
		ADC 时钟频	阿率公式为:							
				$f_{\text{adc_clk}} = f_{\text{p}}$	oclk / {clkdiv	1, clkdiv0}				
7-0	CLKDIV0	其中,f _{adc_c}	⊫ 是 ADC P	内部时钟的制	烫率, <i>f</i> _{pclk} 5	₹ APB 时钟	频率,clkd	iv 是分频倍		
		数。								
		注意 :请勿	注意: 请勿把 clkdiv 设为 0 或 1。若把 clkdiv 设为 0 或 1,也当作 2 分频。如							
		需使用 1 分	·频,建议使	用外部时钟	þ 。					

15.2.13 ADC_CDR1 分频寄存器

FFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ГГП	DIL/	DILO	DILO	DIL4	DILO	DILZ	DILI	ЫШ
ADC_CDR1				CLK	DIV1			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0
位编号	位符号	说明						
7-0	CLKDIV1	ADC 内部的 ADC 时钟频 其中, facc 数。 注意: 请勿 需使用 1 分	顶率公式为: _{ik} 是 ADC p	f _{adc_clk} = f _a 内部时钟的划	若把 clkdiv	를 APB 时钟		

15.3 使用流程

初始化:

- 1. 配置 PCLK0 的 ADCCEN 为 1, 使能 ADC 时钟。
- 2. 配置 PRESETO 的 ADCREN 为 1, ADC 复位释放。
- 3. 配置 ADCGCR0 的 ADCCLKSEL,选择 ADC 时钟源。若选择内部时钟分频器产生的时钟,则配置 ADCCDR0 和 ADCCDR1 设置分频器的分频值。
- 4. 配置 ADCVREF 的 VREFSEL,选择 ADC 电压基准源。
- 5. 配置 ADCSPW 的 SAMPW,设置采样时钟脉冲宽度。
- 6. 配置 ADCHL, 将所需的 ADC 通道对应的 GPIO 配置为 ADC 输入;若通道 0 作为采样通道,需要配置 ADCGCR2 的 P1_2_SEL,选择 P1_2 或 P1_4 作为通道 0。
- 7. 配置 ADCGCRO 的 ADCRCEN,选择禁止或使能 ADC 数据寄存器的读清除。
- 8. 配置 ADCGCRO 的 ADCCUNSET, 选择 ADC 的工作模式。
- 9. 配置 ADCGCR3 的 SAMPNEG 为 0, 配置 EOC 上升沿采样。

- 10. 配置 ADCGCR1 的 ADCPDEN 为 0, SAR ADC 上电。
- 11. 配置 ADCGCR1 的 ADCRST 为 0, SAR ADC 释放。
- 12. 配置 ADCGCRO 的 ADCEN 为 1, 使能 ADC 控制器。
- 13. 若需要使用 ADC 中断、配置 IP 的 IP0 和 IP1、设置 ADC 中断优先级。
- 14. 配置 ADCIER 的 RXINTEN 为 1, 启用 ADC 接收器 BUF 存有效数据中断。
- 15. 配置 IENO 的 EADC 为 1 和 EA 为 1、打开 ADC 中断和打开总中断。

ADC 单次模式采样:

- 1. 配置 ADCGCR2 的 CHEN, 启用相关 ADC 通道进行模数转换。
- 2. 配置 ADCGCR1 的 ADCSTEN, 将信号置 0 再置 1, 产生从低到高的信号转换, ADC 转换开始。
- 3. 读取 ADCGCR1 的 ADCSTEN 的状态、当 ADCSTEN 置 0 时、表示转换完成。
- 4. 读取 ADCCSTAT 的 RXAVL 的状态,当 RXAVL 置 1 时,表示接收器 BUF 存有数据。置 1 后需要写 1 清零。
- 5. 完成转换和接收器 BUF 存有数据后, 读取 ADCDR0 和 ADCDR1 中的通道数据。
- 6. 若在连续模式下、需要配置 ADCGCRO 的 ADCEN 为 0 来停止转换。

使用注意事项:

- ADC 采样速率设置 1Msps, ADC 采样速率=f(ADCCLK)/(采样时间+转换时间)=16MHz/(4clk+12clk)=1Msps。时钟源选择系统时钟发生器产生的时钟时, ADCCDR0 和ADCCDR1 分频无效。
- 2. 通道 7 为内部 LDO 通道。

16 LVD

16.1 概述

LVD 完成低电压检测功能。LVD 可以对低电压检测的结果进行滤波,增强了系统的稳定性。

16.2 寄存器描述

描述 地址 名称 DDH LVD_CON 使能寄存器 中断使能寄存器 A2H OINTEN АЗН **OINTUS** 中断状态寄存器 A6H LVD_OSTATUS 状态寄存器 D8H 复位寄存器 LVD_RSTSTAT C004H 滤波使能寄存器 LVD_LV

表 16-1: 寄存器列表

16.2.1 LVD_CON 使能寄存器

DDH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
LVD_CON	LVDF	-	LVDREN	LVDEN		LVDS[3:1]		-	
读写	读	读	读/写	读/写	读/写	读/写	读/写	读/写	
复位值	0	0	0	0	0	0	0	0	
			•						
位编号	位符号		说明						
		11/	り 松訓 結束式	7.					

位编号	位符号	说明
		LVD 检测标志位:
7	LVDF	0: 未检测到低电压;
		1: 检测到低电压。
6	-	-
		LVD 复位使能控制:
5	LVDREN	0: 关闭检测到低电压复位功能;
		1:使能检测到低电压复位功能,使能复位前必须使能 LVDEN。

		LVD	LVD 模块使能控制:				
4	4 LVDEN	0: 使能 LVD 模块;					
		1: 5	关闭 LVD 模块。				
		LVD	检测点电压设置:				
			LVDS	LVD point			
			000	4.39V			
	LVDS[3:0]		001	3.95V			
2.1			010	3.59V			
3-1			011	3.29V			
			100	3.04V			
			101	2.82V			
			110	2.63V			
			111	2.46V			
0	-	-					

16.2.2 OINTEN 中断使能寄存器

具体请参见"OINTEN 中断使能寄存器"章节。

16.2.3 OINTUS 中断状态寄存器

具体请参见"OINTEN 中断使能寄存器"章节。

16.2.4 LVD_OSTATUS 状态寄存器

								,			
A6H		Bit7 Bit6		Bit7 Bit6		Bit5	Bit5 Bit4 Bit3		Bit2	Bit1	Bit0
LVD_OSTAT	rus	s -		воотьоск	C_NVRLOCK	LVDLOW	NVR2LOCK	NVR1LOCK	EFCREADY		
读/写		读	读	读	读	读	读	读	读		
复位值		0 0		0	0	0	0	0	1		
位编号	号 位符号			说明							
7-6		-		_							
				BOOT区是否锁住。							
5	5 BOOTLOCK		1: BOOT区已经锁住;								
				0: BOOT区没有锁住。							
/1	C N	IV/RI C)CK	C NIVR区是丕	NI//R区是丕锐住						

		1: C_NVR区已经锁住;
		0:C_NVR区没有锁住。
		0:LVD检测电压正常;
3	LVDLOW	1:LVD检测电压过低。
		此位反应当前LVD检测的实时状态。
	NVR1LOCK	Nvr1区是否锁住。
2		1: Nvr1区已经锁住;
		0: Nvr1区没有锁住。
		Nvr0区是否锁住。
1	NVR0LOCK	1: Nvr0区已经锁住;
		0: Nvr0区没有锁住。
		EFlash状态指示位。该反映EFlash工作的状态。
0	EFCREADY	1: EFlash状态空闲;
		0: EFlash状态忙。

16.2.5 LVD_RSTSTAT 复位寄存器

D8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LVD_RSTSTAT	WDOF	WDEN	LVDRF	PORF	ERSTF		WDT[2:0]	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值(POR)	0	0	x	1	х	0	0	0
复位值(WDT)	1	0	Х	Х	х	0	0	0
复位值(PIN)	×	0	X	Х	1	0	0	0
复位值(LVD)	X	0	1	Х	х	0	0	0

位编号	位符号	说明
		看门狗溢出标志位:看门狗溢出时硬件置 1,可由软件或上电复位清 0。
7	WDOF	0: 未发生 WDT 溢出;
		1: 发生 WDT 溢出。
		看门狗使能控制位:
6	WDEN	0: 关闭看门狗功能;
		1: 使能看门狗功能。
		LVD 复位标志位: LVD 复位后硬件置 1, 由软件清 0。
5	LVDRF	0: 没有发生低电压复位;
		1: 发生过低电压复位。
4	PORF	上电复位标志位: 上电复位后硬件置 1, 由软件清 0。

		0: 没有发生上电复位;				
		1: 发生过上电复位。				
		Reset 引脚复位标志位:引脚复位后置 1,由软件清 0。				
3	ERSTF	0: 没有发生引脚复位;				
		1: 发生过引脚复位。				
		WDT 溢出周期控制位:				
		000: 溢出周期最小值= 4096ms;				
		001: 溢出周期最小值= 1024ms;				
		010: 溢出周期最小值= 256ms;				
2-0	WDT[2:0]	011: 溢出周期最小值= 128ms;				
		100: 溢出周期最小值= 64ms;				
		101: 溢出周期最小值= 16ms;				
		110: 溢出周期最小值= 4ms;				
		111: 溢出周期最小值= 1ms。				

16.2.6 LVD_LV 滤波使能寄存器

	1	1		,		1	1	1
C004H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LVD_LV	-	-		-	_	LVD_	TSET	LVDLVEN
读/写	读	读	读	读	读	读/写	读/写	读/写
复位值	0	0	0	0	0	1	1	1
位编号	位符号	说明						
7-3	-	_						
2-1	_	11:滤波B 10:滤波B 01:滤波B	想波时间设置位: 1: 滤波时间为 1 个 RC38K 时钟; 0: 滤波时间为 8 个 RC38K 时钟; 01: 滤波时间为 16 个 RC38K 时钟; 00: 滤波时间为 29 个 RC38K 时钟;					
0	LVDLVEN	LVD 滤波像 1: 开启 R0 0: 关闭 R0	C38K 时钟	•				

UM800YA 用户手册 中断

17 中断

17.1 特性

- 7个中断源 EX0, ES1, ES0, EPWM, EADC, EFC, SPI
- 4层中断优先级可配

17.2 中断汇总

中断源	入口地址	允许位	标志位	轮询优先级	中断号 (C语言)
Reset	0000H	-	4	0 (最高级)	-
INT0	0003H	EX0+PxIENy	PxIRQy	1	0
UART1	0013H	ES1	RI1+TI1	8	2
UART0	0023H	ES0	RIO+TIO	12	4
PWM	002BH	EPWM+PWMxIE	PWMxIF	15	5
ADC	0033H	EADC+ADCIER	RXAVL	2	6
SPI	003BH	ESPI+SPIIE	SPI_SR	6	7
EFC	005BH	EFCINTEN+OINTEN	OINTUS	11	11
LPTIMER	0063H	LPTIMINTEN+LPTIE	LPTIMER_IF	14	12
I2C	006BH	I2CINTEN +I2CCR	-	17	13
UART2	0083H	UART2INTEN	UART_ISR	3	16
UART3	008BH	UART3INTEN	UART_ISR	7	17
GTIMER2	009BH	GTIMER2INTEN	GTIMER_SR	10	19
GTIMER1	00A3H	GTIMER1INTEN	GTIMER_SR	13	20
GTIMER0	00ABH	GTIMER0INTEN	GTIMER_SR	16	21

18 指令集

机器周期为1个时钟周期,且多数指令只需一个机器周期执行完成。

18.1 指令操作数说明

Rn	Working register R0-R7						
direct	256 internal RAM locations, any special function registers						
@Ri	Indirect internal or external RAM location addressed by register R0 or R1						
#data	8-bit constant included in instruction						
#data 16	16-bit constant included as bytes 2 and 3 of instruction						
bit	256 software flags, any bit-addressable I/O pin, control or status bit						
Α	Accumulator						
addr16	Destination address for LCALL and LJMP may be anywhere within the 64K bytes of						
addi io	program memory address space						
addr11	Destination address for ACALL and AJMP will be within the same 2K bytes page of						
auurri	program memory as the first byte of the following instruction						
rol	SJMP and all conditional jumps include an 8-bit offset byte. The range is +127/-128						
rel	bytes relative to the first byte of the following instruction						

18.2 算数操作指令

Mnemonic	Description	Code	Bytes	Cycles
ADD A, Rn	Add register to accumulator	28-2F	1	1
ADD A, direct	Add direct byte to accumulator	25	2	2
ADD A, @Ri	Add indirect RAM to accumulator	26-27	1	2
ADD A, #data	Add immediate data to accumulator	24	2	2
ADDC A, Rn	Add register to accumulator with carry flag	38-3F	1	1
ADDC A, direct	Add direct byte to A with carry flag	35	2	2
ADDC A, @Ri	Add indirect RAM to A with carry flag	36-37	1	2
ADDC A, #data	Add immediate data to A with carry flag	34	2	2
SUBB A, Rn	Subtract register from A with borrow	98-9F	1	1
SUBB A, direct	Subtract direct byte from A with borrow	95	2	2

SUBB A,@Ri	Subtract indirect RAM from A with borrow	96-97	1	2
SUBB A,#data	Subtract immediate data from A with borrow	94	2	2
INC A	Increment accumulator	04	1	1
INC Rn	Increment register	08-0F	1	2
INC direct	Increment direct byte	05	2	3
INC @Ri	Increment indirect RAM	06-07	1	3
INC DPTR	Increment data pointer	А3	1	1
DEC A	Decrement accumulator	14	1	1
DEC Rn	Decrement register	18-1F	1	2
DEC direct	Decrement direct byte	15	2	3
DEC @Ri	Decrement indirect RAM	16-17	1	3
MUL AB	Multiply A and B	A4	1	5
DIV	Divide A by B	84	1	5
DA A	Decimal adjust accumulator	D4	1	1

18.3 逻辑操作指令

Mnemonic	Description	Code	Bytes	Cycles
ANL A, Rn	AND register to accumulator	58-5F	1	1
ANL A, direct	AND direct byte to accumulator	55	2	2
ANL A, @Ri	AND indirect RAM to accumlator	56-57	1	2
ANL A, #data	AND immediate data to accumulator	54	2	2
ANL direct, A	AND accumulator to direct byte	52	2	3
ANL direct, #data	AND immediate data to direct byte	53	3	4
ORL A, Rn	OR register to accumulator	48-4F	1	1
ORL A, direct	OR direct byte to accumulator	45	2	2
ORL A, @Ri	OR indirect RAM to accumulator	46-47	1	2
ORL A, #data	OR immediate data to accumulator	44	2	2
ORL direct, A	OR accumulator to direct byte	42	2	3
ORL direct, #data	OR immediate data to direct byte	43	3	4
XRL A, Rn	Exclusive OR register to accumulator	68-6F	1	1
XRL A, direct	Exclusive OR direct byte to accumulator	65	2	2
XRL A, @Ri	Exclusive OR indirect RAM to accumulator	66-67	1	2
XRL A, #data	Exclusive OR immediate data to accumulator	64	2	2
XRL direct, A	Exclusive OR accumulator to direct byte	62	2	3
XRL direct,#data	Exclusive OR immediate data to direct byte	63	3	4

CLR A	Clear accumulator	E4	1	1
CPL A	Complement accumulator	F4	1	1
RL A	Rotate accumulator left	23	1	1
RLC A	Rotate accumulator left through carry	33	1	1
RR A	Rotate accumulator right	03	1	1
RRC A	Rotate accumulator right through carry	13	1	1
SWAP A	Swap nibbles within the accumulator	C4	1	1

18.4 数据传送指令

Mnemonic	Description	Code	Bytes	Cycles
MOV A, Rn	Move register to accumulator	E8-EF	1	1
MOV A, direct	Move direct byte to accumulator	E5	2	2
MOV A, @Ri	Move indirect RAM to accumulator	E6-E7	1	2
MOV A, #data	Move immediate data to accumulator	74	2	2
MOV Rn, A	Move accumulator to register	F8-FF	1	2
MOV Rn, direct	Move direct byte to register	A8-AF	2	4
MOV Rn, #data	Move immediate data to register	78-7F	2	2
MOV direct, A	Move accumulator to direct byte	F5	2	3
MOV direct, Rn	Move register to direct byte	88-8F	2	3
MOV direct1, direct2	Move direct byte to direct byte	85	3	4
MOV direct, @Ri	Move indirect RAM to direct byte	86-87	2	4
MOV direct, #data	Move immediate data to direct byte	75	3	3
MOV @Ri, A	Move accumulator to indirect RAM	F6-F7	1	3
MOV @Ri, direct	Move direct byte to indirect RAM	A6-A7	2	5
MOV @Ri, #data	Move immediate data to indirect RAM	76-77	2	3
MOV DPTR, #data16	load data pointer with a 16-bit constant	90	3	3
MOVC A, @A+DPTR	Move code byte relative to DPTR to accumulator	93	1	3
MOVC A, @A+PC	Move code byte relative to PC to accumulator	83	1	3
MOVX A, @Ri	Move external RAM (8-bit addr.) to A	E2-E3	1	3-10
MOVX A, @DPTR	Move external RAM (16-bit addr.) to A	E0	1	3-10
MOVX @Ri, A	Move A to extern RAM (8-bit addr.)	F2-F3	1	4-11
MOVX @DPTR, A	Move A to extern RAM (16-bit addr.)	F0	1	4-11
PUSH direct	Push direct byte onto stack	C0	2	4

POP direct	Pop direct byte from stack	D0	2	3
XCH A,Rn	Exchange register with accumulator	C8-CF	1	2
XCH A,direct	Exchange direct byte with accumulator	C5	2	3
XCH A,@Ri	Exchange indirect RAM with accumultor	C6-C7	1	3
XCHD A,@Ri	Exchange low-order nibble indir.RAM with A	D6-D7	1	3

18.5 控制程序转移指令

Mnemonic	Description	Code	Bytes	Cycles
ACALL addr11	Absolute subroutine call	xxx11	2	6
LCALL addr16	Long subroutine call	12	3	6
RET	from subroutine	22	1	4
RETI	from interrupt	32	1	4
AJMP addr11	Absolute jump	xxx01	2	3
LIMP addr16	Long jump	02	3	4
SJMP rel	Short jump (relative addr.)	80	2	3
JMP @A+DPTR	Jump indirect relative to the DPTR	73	1	2
JZ rel	Jump if accumulator is zero	60	2	3
JNZ rel	Jump if accumulator is not zero	70	2	3
JC rel	Jump if carry flag is set	40	2	3
JNC	Jump if carry flag is not set	50	2	3
JB bit, rel	Jump if direct bit is set	20	3	4
JNB bit, rel	Jump if direct bit is not set	30	3	4
JBC bit, direct rel	Jump if direct bit is set and clear bit	10	3	4
CJNE A, direct rel	Compare direct byte to A and jump if not equal	B5	3	4
CJNE A, #data rel	Compare immediate to A and jump if not equal	B4	3	4
CJNE Rn, #data rel	Compare immed. to reg. and jump if not equal	B8-BF	3	4
CJNE @Ri, #data rel	Compare immed. to ind. and jump if not equal	B6-B7	3	4
DJNE Rn, rel	Decrement register and jump if not zero	D8-DF	2	3
DJNZ direct, rel	Decrement direct byte and jump if not zero	D5	3	4
NOP	No operation	00	1	1

18.6 位操作指令

Mnemonic	Description	Code	Bytes	Cycles
CLR C	Clear carry flag	C3	1	1
CLR bit	Clear direct bit	C2	2	3
SETB C	Set carry flag	D3	1	1
SETB bit	Set direct bit	D2	2	3
CPL C	Complement carry flag	В3	1	1
CPL bit	Complement direct bit		2	3
ANL C, bit	AND direct bit to carry flag		2	2
ANL C, /bit	AND complement of direct bit to carry	t of direct bit to carry B0 2		2
ORL C, bit	OR direct bit to carry flag	72	2	2
ORL C, /bit	OR complement of direct bit to carrry A0 2		2	2
MOV C, bit	Move direct bit to carry flag		2	2
MOV bit, C	Move carry flag to direct bit		2	3

UM800YA 用户手册 供电方案

19 供电方案

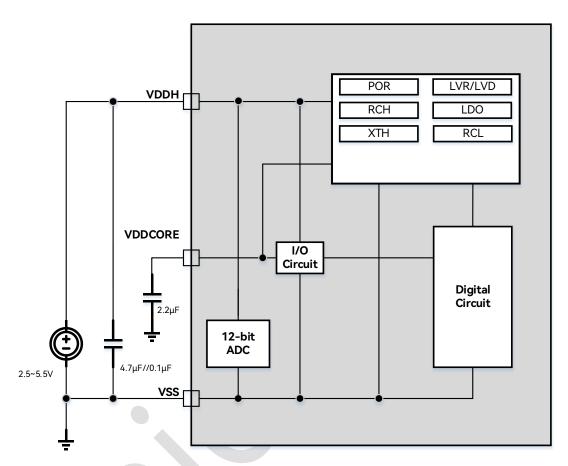


图 19-1: 供电方案图

UM800YA 用户手册 版本维护

20 版本维护

版本	日期	描述
V1.0	2025.03.20	初始版
V1.0.1	2025.05.12	更新"图 19-1:供电方案图"。
V1.0.2	2025.06.06	"4.1.31 RCHTRIML" bits 7-4 删除"温漂"二字。

