保密级别:外部使用

UM8007

超低功耗 8-bit MCU: 1T8051, 64KB eFlash, 2KB+256B SRAM, 12-bit ADC, CAN 免晶振/LDO/RC 电路,丰富接口,防死机,防抄板

产品特性

● 超低功耗电源管理系统

- 1.1μA @3.0V DeepSleep+定时唤醒, 低速时钟运行, IO、SRAM 以及寄存器数据保持
- 0.75μA @3.0V Stop 模式, 所有时钟停止, IO、 SRAM 以及寄存器数据保持
- 80µA/MHz @3.0V Active 模式
- 内置 ROSC/LDO/POR 模块,板级系统可免去 晶振/LDO/复位电路

● 处理器

- 8 位高性能 8051 单片机, 1T, 速度比普通 8051 快 6~12 倍

● 存储器

- RAM: Idata 256B, Xdata 2KB
- 64KB eFlash/1KB EEPROM
- GPIO:最大 17 个,内置上/下拉可配置
- **PWM:** 11 路 16 位 PWM 输出

● 定时/计数器

- 3个16位高级定时器GT,带死区互补功能
- 1 个 16 位低功耗定时器 LPTimer, 支持 PWM 输出
- 1 个看门狗 WDT

● 时钟

- 内部高速时钟 RCH: 24MHz
- 内部低速时钟 RCL: 38kHz
- 外部晶体振荡器: 24MHz (max)
- 外部时钟输入: 24MHz (max)

● 通信接口

- UART: 4个串口 UART0/UART1/UART2/UART3
- CAN: 1路, 支持 CAN2.0 A/B 协议
- I2C: 主/从模式,速率 400kbps (max)
- SPI: 1 路, 主/从模式, Mode0/1/2/3 协议, 最高速率 12Mbps

TSSOP20 (6.5*4.4mm)

QFN20 (3*3mm)

● BEEPER:蜂鸣器,输出频率和极性可配置

● 模拟外设

- ADC: 8 通道 12 位 SAR ADC, 1Msps 采样 速率
- 低电压检测 LVD,可监控电源电压
- 掉电复位 LVR, 防死机设计

● 安全

- 硬件级防抄板设计
- 16 字节全球唯一芯片序列号 UID

● 电气参数

- 工作电压: 2.5~5.5V
- 工作温度: -40 ~ 105°C (≤16MHz)

-40 ~ 85°C (24MHz)

- ESD 保护: 8kV (HBM)

● 开发支持

- 内置 Boot 引导程序,支持 UART 下载,支持 ISP 和 IAP 应用程序更新
- 完整 SDK 开发包、EVB 硬件开发套件
- 离线烧录器和量产工具支持

● 选型

类型	型号
64KD 版	UM8007-ACTE (TSSOP20)
64KB 版	UM8007-ACQE (QFN20)

UM8007 Datasheet 产品描述

1 产品描述

UM8007 单片机是广芯微电子(广州)股份有限公司研制的基于单周期 8051 内核的低功耗 8 位 IoTP 处理器芯片。芯片系统采用了独特的低功耗设计技术, 宽工作电压 2.5 ~ 5.5V, 内部集成了 64KB 的 Flash、2KB+256B 的 SRAM 以及 12 位 1Msps 的 SAR ADC 以及 UART、SPI、I2C、PWM、CAN 等通用外围通信接口。

该单片机具有资源高整合度、高抗干扰性能、高可靠性、低功耗设计以及极简外围器件等技术特点。 内置高速时钟 ROSC、LDO 和 POR 模块,板级电路可免晶振、LDO、复位电路。支持 Keil MDK 通用集成开发环境,支持 C 语言和汇编语言进行软件开发。

应用场景:

- ▶ 工业物联网终端应用
- ▶ 智慧城市、智能家居应用
- ▶ 智能传感器终端应用
- ▶ 玩具控制等通用控制器应用

UM8007 Datasheet 功能框图

2 功能框图

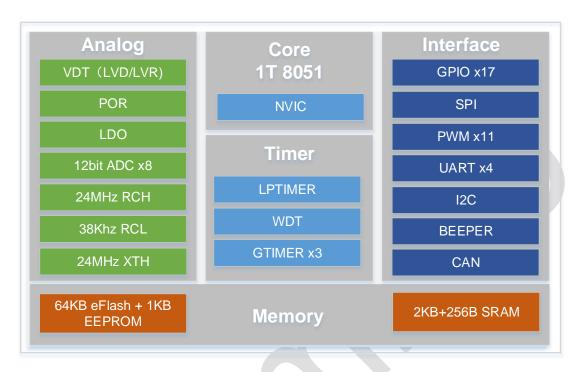


图 2-1: 功能框图

3 封装及描述

3.1 封装管脚分布

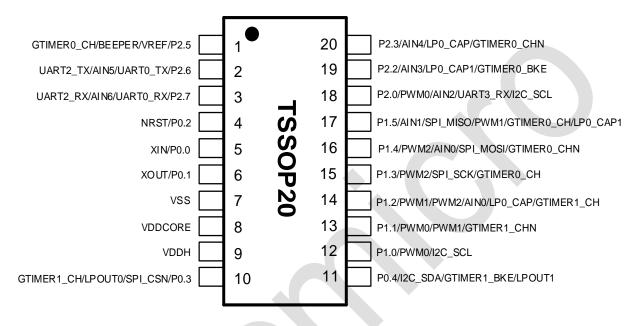


图 3-1: TSSOP20 封装管脚分布图

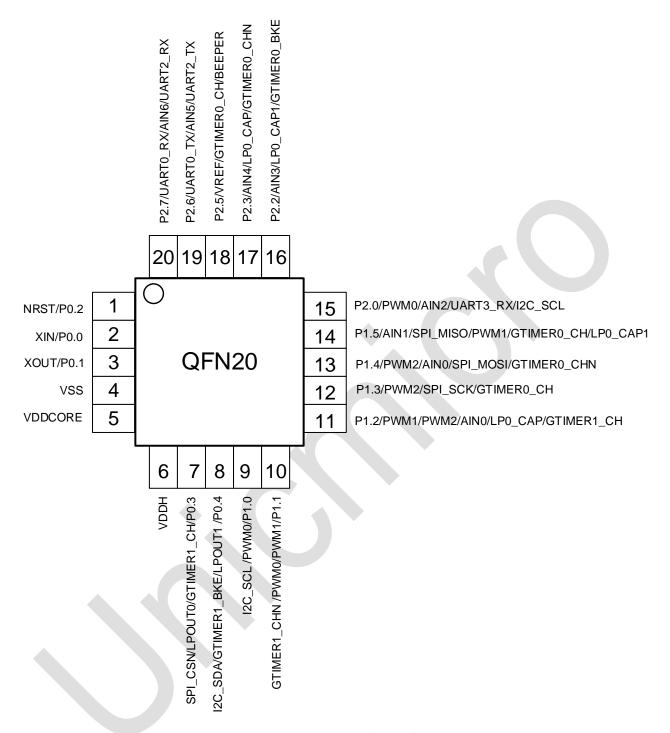


图 3-2: QFN20 封装管脚分布图

3.2 引脚复用

表 3-1: 引脚功能复用

引脚组	扁号	Cantin					Pxx_CFG[2:0]			
TSSOP20	QFN20	Config	0	1	2	3	4	5	6	7
1	18	VREF	P2.5	UART3_TX	SPI_CSN	I2C_SCL	GTIMER0_CH	GTIMER0_BKE	BEEPER	UART0_RX
2	19	AIN5	P2.6	UART0_TX	UART2_TX	SPI_MISO	LPOUT1	GTIMER1_CH	GTIMER2_CH	-
3	20	AIN6	P2.7	UART0_RX	UART2_RX	SPI_MOSI	I2C_SCL	GTIMER1_CHN	GTIMER2_BKE	BEEPER
4	1	NRST/P0.2	-	-	-	-	-	-	-	-
5	2	XIN	P0.0	UART2_RX	SPI_CSN	LPOUT0	GTIMER1_CHN	GTIMER2_BKE	CAN_TX	-
6	3	XOUT	P0.1	UART2_TX	SPI_SCK	I2C_SDA	LPOUT1	GTIMER0_BKE	GTIMER2_CHN	CAN_RX
7	4	VSS	-	-	-	-	-	-	-	-
8	5	VDDCORE	-	-	-	7	-	-	-	-
9	6	VDDH	-	-	-	-	-	-	-	-
10	7	LPT_OUT	P0.3	CLKOUT	UART2_TX	UART3_RX	SPI_CSN	LPOUT0	GTIMER1_CH	CAN_TX
11	8	-	P0.4	UART2_RX	SPI_SCK	I2C_SDA	LPOUT1	GTIMER1_BKE	GTIMER2_CHN	CAN_RX
12	9	-	P1.0	UART1_RX	UART2_TX	PWM0	I2C_SCL	LP0_IN	GTIMER2_CH	-
13	10	-	P1.1	UART1_TX	UART3_RX	PWM1	SPI_MISO	LP0_TRG	GTIMER1_CHN	PWM0
14	11	AIN0	P1.2	UART0_RX	UART3_TX	PWM2	LP0_CAP	GTIMER1_CH	PWM1	CAN_TX
15	12	-	P1.3	UART0_TX	UART2_RX	SPI_SCK	I2C_SDA	LP0_IN	GTIMER0_CH	PWM2
16	13	AIN0	P1.4	UART1_RX	PWM2	SPI_MOSI	LP0_TRG	GTIMER0_CHN	GTIMER1_BKE	CAN_RX
17	14	AIN1	P1.5	UART1_TX	PWM1	SPI_MISO	GTIMER0_CH	GTIMER1_BKE	GTIMER2_CH	LP0_CAP1
18	15	AIN2	P2.0	UART3_RX	PWM0	SPI_MOSI	I2C_SCL	LPOUT0	GTIMER0_CHN	-
19	16	AIN3	P2.2	UART3_TX	SPI_CSN	SPI_MISO	I2C_SDA	GTIMER0_BKE	GTIMER2_CHN	LP0_CAP1
20	17	AIN4	P2.3	UART3_RX	SPI_SCK	SPI_MOSI	LP0_CAP	GTIMER0_CHN	GTIMER2_BKE	CAN_RX

3.3 信号描述

表 3-2: 引脚功能说明

引脚编号		引脚	Ю	复位	状态	T I BLD ALK TO	
TSSOP20	QFN20	名称	Туре	DIR	PU PD	引脚类型 	功能描述
						P2.5(默认)	通用数字输入/输出管脚
						BEEPER	蜂鸣器输出
						VREF	ADC VREF 输入
						UART0_RX	UARTO RX 信号
1	18	P2.5	I/O	DI		UART3_TX	UART3 TX 信号
1	10	P2.3	1/0	וט	-	SPI_CSN	SPI CS 信号
						I2C_SCL	I2C SCL 信号
						GTIMER0_CH	GTIMER0 Capture 和 PWM 信号
					,	GTIMER0_BKE	GTIMER0 的刹车信号
						P2.6(默认)	通用数字输入/输出管脚
							UART0 TX 信号
						UART0_TX	(BOOT UART 下载用此口,
							需 NRST 信号配合使用)
						AIN5	ADC CH5 信号
2	19	P2.6	I/O	DI		UART2_TX	UART2 TX 信号
						SPI_MISO	SPI MISO 信号
						LPOUT1	LPTIMER 的 PWM1 信号
						GTIMER1_CH	GTIMER1 Capture 和 PWM 信号
						CTIMEDO CU	GTIMER2 Capture 和 PWM
						GTIMER2_CH	信号
						P2.7(默认)	通用数字输入/输出管脚
							UART0 RX 信号
						UART0_RX	(BOOT UART 下载用此口,
							需 NRST 信号配合使用)
						AIN6	ADC CH6 信号
3	20	P2.7	I/O	DI	-	UART2_RX	UART2 RX 信号
						SPI_MOSI	SPI MOSI 信号
						I2C_SCL	I2C SCL 信号
						GTIMER1_CHN	GTIMER1 PWM 反向信号
						GTIMER2_BKE	GTIMER2 刹车信号
						BEEPER	蜂鸣器信号

引脚组	扁号	引脚	Ю	复位	状态	7 114 246 114	
TSSOP20	QFN20	名称	Туре	DIR	PU PD	引脚类型 	功能描述
4	1	P0.2	I/O	DI	PU	NRST (默认) P0.2	Reset Pin,低电平复位,内部强制上拉 此信号为 UART 批量下载必 要信号,建议 PCB 上引出该 管脚信号(pad 或 pin) 通用数字输入/输出管脚
5	2	P0.0	I/O	DI	-	P0.0 (默认) XIN UART2_RX SPI_CSN LPOUT0 GTIMER1_CHN GTIMER2_BKE CAN_TX	通用数字输入/输出管脚 晶振输入 PIN UART2 RX 信号 SPI CS 信号 LPTIMER PWM0 信号 GTIMER1 PWM 反向信号 GTIMER2 刹车信号 CAN TX 信号
6	3	P0.1	I/O	DI		P0.1(默认) XOUT UART2_TX SPI_SCK I2C_SDA LPOUT1 GTIMER0_BKE GTIMER2_CHN CAN_RX	通用数字输入/输出管脚 晶振输出 PIN UART2 TX 信号 SPI SCK 信号 I2C SDA 信号 LPTIMER PWM1 信号 GTIMER 刹车信号 GTIMER2 PWM 反向信号 CAN RX 信号
7	4	vss	G	AP	-	VSS	电源地 Ground
8	5	VDDCORE	Р	AP	-	VDDCORE	内部 LDO 2.5V 输出 (需挂 1µF 电容)
9	6	VDDH	Р	AP	-	VDDH	芯片电源 2.5V~5.5V
10	7	P0.3	I/O	DI	-	P0.3 (默认) LPT_OUT CLKOUT UART2_TX UART3_RX SPI_CSN LPOUT0 GTIMER1_CH	通用数字输入/输出管脚 LPTIMER OUT 信号 CLK OUT 信号 UART2 TX 信号 UART3 RX 信号 SPI CS 信号 LPTIMER PWM0 信号 GTIMER1 Capture 和 PWM 信号

引脚编号		引脚	Ю	复位状态		7 646 M/L Tri	-1 AP 144.18
TSSOP20 QF	FN20	名称	Туре	DIR	PU	引脚类型	功能描述
					PD		
						CAN_TX	CAN TX 信号
						P0.4(默认)	通用数字输入/输出管脚
						UART2_RX	UART2 RX 信号
						SPI_SCK	SPI SCK 信号
11 8		P0.4	I/O	DI		I2C_SDA	I2C SDA 信号
		1 0.4	1/0	וט		LPOUT1	LPTIMER PWM1 信号
						GTIMER1_BKE	GTIMER1 刹车信号
						GTIMER2_CHN	GTIMER2 PWM 反向信号
						CAN_RX	CAN RX 信号
						P1.0(默认)	通用数字输入/输出管脚
						PWM0	PWM0 信号
						LP0_IN	LPTIMER 输入信号
12 9		P1.0	I/O	DI	-	I2C_SCL	I2C SCL 信号
12 9		F 1.0	1/0	וט	-	UART1_RX	UART1 RX 信号
						UART2_TX	UART2 TX 信号
						GTIMER2_CH	GTIMER2 Capture 和 PWM
						GTIMER2_CH	信号
						P1.1(默认)	通用数字输入/输出管脚
		P1.1				PWM0	PWM0 信号
						PWM1	PWM1 信号
13 10	,		I/O	DI		UART1_TX	UART1 TX 信号
13 10	,		1/0	וט		UART3_RX	UART3 RX 信号
						SPI_MISO	SPI MISO 信号
						LP0_TRG	LPTIMER Trigger 信号
						GTIMER1_CHN	GTIMER1 PWM 反向信号
						P1.2(默认)	通用数字输入/输出管脚
						PWM2	PWM2 信号
						AIN0	ADC CH0 信号
						PWM1	PWM1 信号
14 11		P1.2	I/O	DI		UART0_RX	UART0 RX 信号
14 11	I	P1.2	1/0	וט	-	UART3_TX	UART3 TX 信号
						LP0_CAP	LPTIMER 的 capture 信号
						GTIMER1_CH	GTIMER1 Capture 和 PWM 信号
						CAN_TX	CAN TX 信号
						P1.3(默认)	通用数字输入/输出管脚
						UARTO_TX	UARTO TX 信号
15 12	12	P1.3	I/O	DI	-	PWM2	PWM2 信号
						UART2_RX	UART2 RX 信号

引脚组	扁号	引脚	Ю	复位	状态		-1 66 143.15
TSSOP20	QFN20	名称	Туре	DIR	PU PD	引脚类型	功能描述
						SPI_SCK	SPI SCK 信号
						I2C_SDA	I2C SDA 信号
						LP0_IN	LPTIMER 输入信号
						GTIMER0_CH	GTIMER0 Capture 和 PWM 信号
						P1.4(默认)	通用数字输入/输出管脚
						UART1_RX	UART1 RX 信号
						AIN0	ADC CH0 信号
						SPI_MOSI	SPI_MOSI 信号
16	13	P1.4	I/O	DI	-	PWM2	PWM2 信号
						LP0_TRG	LPTIMER Trigger 信号
						GTIMER0_CHN	GTIMERO PWM 反向信号
						GTIMER1_BKE	GTIMER1 刹车信号
					<u> </u>	CAN_RX	CAN RX 信号
						P1.5(默认)	通用数字输入/输出管脚
						UART1_TX	UART1 TX 信号
						SPI_MISO	SPI_MISO 信号
						AIN1	ADC CH1 信号
			I/O	DI		PWM1	PWM1 信号
17	14	P1.5			-	GTIMER0_CH	GTIMER0 Capture 和 PWM 信号
						GTIMER1_BKE	GTIMER1 刹车信号
						GTIMER2_CH	GTIMER2 Capture 和 PWM 信号
						LP0_CAP1	LPTIMER Capture1 信号
						P2.0(默认)	通用数字输入/输出管脚
						AIN2	ADC CH2 信号
						UART3_RX	UART3 RX 信号
18	15	P2.0	I/O	DI		PWM0	PWM0 信号
10	13	1 2.0	1/0		_	SPI_MOSI	SPI MOSI 信号
						I2C_SCL	I2C_SCL
						LPOUT0	LPTIMER PWM0 信号
						GTIMER0_CHN	GTIMER0 PWM 反向信号
						P2.2(默认)	通用数字输入/输出管脚
						AIN3	ADC CH3 信号
19	16	P2.2	1/0	רו		UART3_TX	UART3 TX 信号
19		1 4.4	I/O	DI	-	SPI_CSN	SPI CS 信号
						SPI_MISO	SPI MISO 信号
						I2C_SDA	I2C SDA 信号

引脚编号		引脚	Ю	复位状态		3 B40 44 AU	TL &K.141-74	
TSSOP20	QFN20	名称	Туре	DIR	PU PD	引脚类型	功能描述	
						GTIMER0_BKE	GTIMER0 刹车信号	
						GTIMER2_CHN	GTIMER2 PWM 反向信号	
						LP0_CAP1	LPTIMER Capture1 信号	
						P2.3(默认)	通用数字输入/输出管脚	
						AIN4	ADC CH4 信号	
						UART3_RX	UART3 RX 信号	
						SPI_SCK	SPI SCK 信号	
20	17	P2.3	I/O	DI	-	SPI_MOSI	SPI MOSI 信号	
						LP0_CAP	LPTIMER Capture 信号	
						GTIMER0_CHN	GTIMER0 PWM 反向信号	
						GTIMER2_BKE	GTIMER2 刹车信号	
						CAN_RX	CAN RX 信号	

说明:

A -模拟信号; D -数字信号; I - Input; O - Output; G - Ground; P - Power; PU- pull up 上拉; PD- pull down 下拉; HZ - 高阻状态。

4 电气参数

4.1 绝对最大额定值

外部条件如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受 永久性损坏的最大载荷,并不意味着在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响 器件的可靠性。

符号	描述	最小值	最大值	单位
Vss	从如从中中区	-0.3	-	٧
V_{DDH}	外部供电电压	-	+6.0	V
T _{stg}	存储温度	-55	+150	°C
TJ	结温温度	-40	+125	°C
I _{DD}	V _{DDH} 引脚的最大输入电流	-	50	mA
I _{SS}	Vss 引脚的最大输出电流	-	50	mA
V _{ESD(HBM)}	静电防护电压	-8	+8	KV

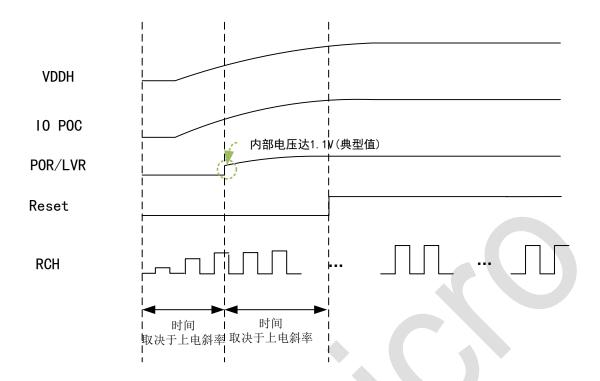
表 4-1: 绝对最大额定值

注意: IO 管脚的输入电压不可超过 VDDH 电压值,否则会造成芯片损坏。

4.2 工作条件

4.2.1 通用工作条件

表 4-2: 通用工作条件


符号	描述		最小值	最大值	单位
V_{DDH}	工作电压		2.5	5.5	٧
+	环体设备	F _{sys} =24MHz	-40	+85	°C
T _A	环境温度	F _{sys} ≤ 16MHz	-40	+105	°C
F _{sys}	系统主频		0.1*	24	MHz

注意: F_{svs} 低于 2MHz 时, flash 只能取指执行代码,不可擦除和写操作。

4.2.2 上电和掉电时的工作条件

表 4-3: 上电和掉电时的工作条件

符号	描述	最小值	最大值	单位	
	VDDH 上升时间速率	0	110000		
t∨DDH	VDDH 下降时间速率	0	110000	μs/V	

注意: 掉电时, 当LVR产生低电平复位后, 再次上电后, 需要经历整个上电流程

4.2.3 VDT 电压检测(LVR/LVD)

除非特别说明, 否则 V_{DDH}=3.3V, T_A=-40~105°C。

表 4-4: LVR 低电压检测特性

符号	描述	条件	最小值	典型值	最大值	单位
$V_{\text{IN_LVR}}$	输入的检测电压范围	-	0	-	V_{DD}	V
V	松测 语传	Deepsleep mode	-	0.9	-	V
V_{LVR}	检测阈值	Active mode	-	1.1	-	V
V _{HYS}	迟滞电压	-	-	100	-	mV

表 4-5: LVD 低电压检测特性

1	守号	描述	条件	最小值	典型值	最大值	单位
\	IN_LVD	输入的检测电压范围	-	0	-	V_{DD}	V

符号	描述	条件	最小值	典型值	最大值	单位
		ADJ_LVD<3:1>=000		4.12		
		ADJ_LVD<3:1>=001 ADJ_LVD<3:1>=010 ADJ_LVD<3:1>=011 ADJ_LVD<3:1>=011 ADJ_LVD<3:1>=100 2.4	3.69			
		ADJ_LVD<3:1>=010		3.38		
	松阳河 体	ADJ_LVD<3:1>=011		3.09		
V_{LVD}	检测阈值 	ADJ_LVD<3:1>=100	-	2.85	-	V
		ADJ_LVD<3:1>=101		2.65		
		ADJ_LVD<3:1>=110		2.48		
		ADJ_LVD<3:1>=111		2.32		
V _{HYS}	迟滞电压	-	-	100	-	mV
I_{VDD}	消耗电流	-	-	800		nA

4.2.4 工作电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的位置以及执行的代码等。

表 4-6: 工作电流特性

符号	描述	测试条件		最小值	典型值	最大值	单位
		运行模式(Active); V _{DDH} =3.3 V; 在 Flash 中运行程序 while(1){} 被禁止: CCLK = 16 MHz		-	1.28	-	mA
		运行模式(Active); V _{DDH} =3.3	CCLK = 16 MHz	-	1.5	-	mA
	T 16 th 15	V/5V; T _A =25°C; 在 Flash 中 运行程序 while(1){}; 所有外	CCLK = 4 MHz	-	0.5	-	mA
I _{DD}	工作电流	设开启	CCLK = 2 MHz	-	0.3	-	mA
		空闲模式(Sleep);V _{DDH} = 3.	3 V; T _A =25°C	-	0.24	-	mA
		深度睡眠模式(DeepSleep); V _I T _A =25°C	_{DDH} = 3.3 V;	-	1.1	-	μΑ
		停止模式(Stop); V _{DDH} = 3.3 V;	; T _A =25°C	-	0.75	-	μA

注: 典型值范围不保证。列表里的值都是在正常电压和室温下取得的。

4.2.5 低功耗模式返回时间

表 4-7: 低功耗模式返回时间

符号	描述	条件	最小值	典型值	最大值	单位
T_{wakeup}	Deep sleep mode to Active mode	Regulator voltage =2.5V,T _A =25°C, 16MHz	-	16.6	1	μS

4.2.6 内部时钟源特性

▶ 内部 RCH 振荡器

除非特别说明, 否则 V_{DDH}=3.3V, T_A=-40~105°C。

表 4-8: RCH 振荡器特性

符号	描述	条件	最小值	典型值	最大值	单位
F _{HSI}	时钟频率	T _A =-40 ~ 105°C	24*(1-2.5%)	24	24*(1+2.5%)	MHz
Duty	占空比	F _{HSI} =24MHz	45	50	55	%
T _{SU}	时钟建立时间	-	-	1.2	-	μs
I_{VDD}	消耗电流	-	1	80	-	μA

▶ 内部 RCL 振荡器

除非特别说明, 否则 V_{DDH}=3.3V, T_A=-40~105°C。

表 4-9: RCL 振荡器特性

符号	描述	条件	最小值	典型值	最大值	单位
F _{LSI}	时钟频率	完成修调	38*(1-5%)	38	38*(1+5%)	kHz
Duty	占空比	-	48	50	52	%
T _{SU}	时钟建立时间	-	-	100	200	μs
I _{VDD}	消耗电流	-	-	260	-	nA

4.2.7 外部 XTH 晶振特性

除非特别说明, 否则 V_{DDH}=3.3V, T_A=-40~105℃。

表 4-10: 外部 XTH 晶振特性

符号	描述	条件	最小值	典型值	最大值	单位
Fosc_IN	频率范围	-	2.0	16	24	MHz
T _{SU}	时钟建立时间	-	-	2	-	ms
I_{VDD}	消耗电流	-	-	0.9	-	mA
I _{lk}	漏电电流	•	-	0.01	ı	μA

4.2.8 存储器特性

表 4-11: eFlash 特性

符号	描述	条件	最小值	典型值	最大值	单位
ECflash	Sector Endurance	-	20K	-	-	cycles
RETflash	Data retention	-	10	-	-	Years
Tprog	Word Program Time	-	-	-	20	μs
Torono	Sector Erase Time	-	2	-	5	ms
Terase	Chip Erase Time	-	20	-	40	ms

4.2.9 IO 特性

表 4-12: IO 特性

符号	描述	测试条件	最小值	典型值	最大值	单位
I _{IL}	低电平输入电流	V _I =0V;	-1	-	-	μA
I _{IH}	高电平输入电流	$V_I = V_{DD}$	-	-	+1	μA
Vo	输出电压	输出管脚 active	0	-	V_{DD}	V
V_{IH}	高电平输入	-	$0.7*V_{DDH}$	-	-	V
V_{IL}	低电平输入	-	-	-	0.3*V _{DDH}	V
V_{hys}	迟滞电压	-	0.1*V _{DD}	-	-	V
V	京 由 亚桧山	5V, 在高驱动模式正常输出 I _{Load} = 16mA 在低驱动模式正常输出 I _{Load} = 8mA	V _{DDH} -0.8	-	-	V
V _{OH}	高电平输出	3.3V, 在高驱动模式正常输出 I _{Load} = 8mA 在低驱动模式正常输出 I _{Load} = 4mA	2.4	-	-	V
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	// 中亚松山	5V, 在高驱动模式正常输出 I _{Load} = 16mA 在低驱动模式正常输出 I _{Load} = 8mA	-	-	0.5	V
V _{OL}	低电平输出	3.3V, 在高驱动模式正常输出 I _{Load} = 8mA 在低驱动模式正常输出 I _{Load} = 4mA	-	-	0.4	V
	喜西亚松山西	5V, 在高驱动模式正常输出 在低驱动模式正常输出	-	16 8	-	mA
I _{ОН}	高电平输出电流	3.3V, 在高驱动模式正常输出 在低驱动模式正常输出	-	8 4	-	mA

符号	描述	测试条件	最小值	典型值	最大值	单位
		5V,				
		在高驱动模式正常输出	-	16	-	mA
,	 低电平输出电流	在低驱动模式正常输出	-	8	-	
I _{OL}	低电平制齿电流 	3.3V,				
		在高驱动模式正常输出	-	8	-	mA
		在低驱动模式正常输出	-	4	-	
R _{pup}	上拉/下拉电阻	5V/3.3V	20		100	ΚΩ
R _{pdn}	土沙 下沙电阻	00/3.30	20	-	100	N12
C _{IN}	容性阻抗	5V/3.3V	-	-	10	pF

4.2.10 ESD/Latchup 特性

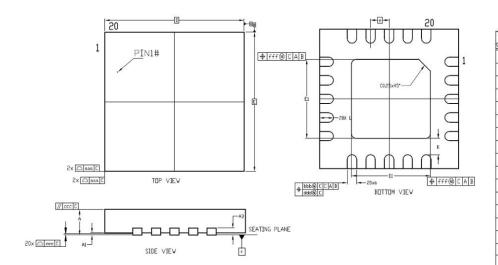
以下测得的数据指标基于 ESDA/JEDEC 标准, TA = +25 °C。

表 4-13: ESD/Latchup 特性

符号	描述	等级	最大值	单位
Vesd(HBM)	ESD @ Human Body Mode	Class 3B	8000	٧
VESD(CDM)	ESD @ Charge Device Mode	Class C2	500	٧
Vesd(MM)	ESD @ machine Mode	Class B	200	٧
latchup	Latch up current	Class IA	200	mA

4.2.11 ADC 特性

以下电气特性数据在(T_A)=25℃,V_{DDA}=3.3V 和 V_{DDD25}=2.5V 下测得。

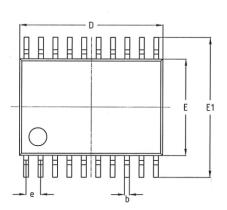

表 4-14: ADC 特性

符号	描述	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0	-	VDD	V
V_{REF}	ADC reference Voltage	-	-	VDD	-	V
I _{ADC}	-	-	0.7	0.9	1.2	mA
C _{ADCIN}	ADC input capacitance	-	3.5	4	4.5	рF
F _{ADCCLK}	ADC clock Frequency	-	0.5	4	16	MHz
T _{ADCSTART}	Startup time of ADC bias current	-	2	3	4	μs
T _{ADCCONV}	Conversion time	-	16	16	20	cycles
ENOB	-	-	9.5	10	10.4	Bit
DNL	Differential non-linearity	-	-2	±1	2	LSB
INL	Integral non-linearity	-	-3	±1	3	LSB
Eo	Offset error	-	-2	±1	2	LSB
Eg	Gain error	-	-2	±1	2	LSB

注: 不在生产中测试

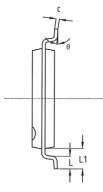
5 封装尺寸

5.1 QFN20 (3*3 mm)



DIM MBOL	MIN.	N□M.	MAX	
Α	0.50	0.55 0.6		
A1	0	0.02	0.05	
A3	-	0.152 REF		
b	0.15	0.20	0.25	
D		3.00BSC		
E		3.00BSC		
D1	1.60	1.70	1.80	
E1	1.60	1.70	1.80	
е	2	0.40BSC		
L	0.20	0.30	0.40	
K	0.20	-	-	
aaa		0.10		
bbb		0.07		
CCC	0.10			
ddd	0.05			
666	0.08			
fff		0.10		

图 5-1: QFN20 封装图


TSSOP20 (6.5*4.4 mm) **5.2**

TOP VIEW

SIDE VIEW

		í		
 2	7	!	↓ L1	

Dimensions/mm					
SYMBOL	MIN	NOMINAL	MAX		
Α	-	-	1.20		
A1	0.05	-	0.15		
A2	0.90	1.00	1.05		
АЗ	0.39	0.44	0.49		
b	0.20	, -	0.28		
С	0.13	-	0.17		
D	6.40	6.50	6.60		
Е	4.30	4.40	4.50		
E1	6.20	6.40	6.60		
е	0.65 BSC				
L1	1.00REF				
L	0.45	0.60	0.75		
θ	0°	-	8°		

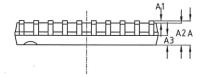


图 5-2: TSSOP20 封装图

UM8007 Datasheet 版本维护

6 版本维护

版本	日期	描述		
V1.0	2022.01.13	初始版本		
V1.1		更新 QFN20 封装尺寸图;		
		更新信号描述;		
	2022.02.10	更新 TSSOP20 封装尺寸图;		
	2022.02.10	更新 DC 参数;		
		删除 T0/T1 相关描述;		
		更新内部 RCL 振荡器参数。		
V1.2		首页增加 1KB EEPROM 相关信息;		
		更新封装管脚分布图;		
	2022.03.11	增加引脚复用章节;		
		更新信号描述;		
		更新内部 RCH 振荡器参数。		
V1.3		新增 "4.2.2 上电和掉电时的工作条件"章节;		
	2022.03.28	更新内部 RCH 振荡器参数;		
		更新工作温度范围。		
V1.4		更新 SOP8 封装;		
	2022.04.22	修正全文 1.5V 为 2.5V;		
		更新引脚复用章节(修正 P13_CFG[2:0]中 bit7 描述为 PWM2)。		
V1.5	2022.07.13	调整首页及电气参数章节结构		
V1.6		删除 UM8007-ACSA (SOP8)型号及相关信息;		
	2024.04.24	删除"IO端口特性"章节;		
		更新 QFN20 封装图。		

UM8007 Datasheet 联系我们

7 联系我们

公司: 广芯微电子(广州)股份有限公司

地址:

广州:广州市黄埔区科学大道 191 号科学城商业广场 A1 栋 603

邮编: 510700

电话: +86-020-31600229

上海: 上海市浦东新区祖冲之路 1077 号 2 幢 5 楼 1509 室

邮编: 201210

电话: +86-021-50307225

Email: <u>sales@unicmicro.com</u>
Website: <u>www.unicmicro.com</u>

本文档的所有部分,其著作产权归广芯微电子(广州)股份有限公司(以下简称广芯微电子)所有,未经广芯微电子授权许可,任何个人及组织不得复制、转载、仿制本文档的全部或部分组件。本文档没有任何形式的担保、立场表达或其他暗示,若有任何因本文档或其中提及的产品所有资讯所引起的直接或间接损失,广芯微电子及所属员工恕不为其担保任何责任。除此以外,本文档所提到的产品规格及资讯仅供参考,内容亦会随时更新,恕不另行通知。